Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уилкинс

    Что касается вторичной структуры, то наш И сведения относятся в большей степени к ДНК. Две макромолекулы этой кислоты образуют двойную спираль с правым направлением вращения, причем азотистые основания каждой макромолекулы направлены внутрь двойной спирали и связаны друг с другом водородными связями. Такая структура называется по имени первооткрывателей моделью Уотсона — Крика. Оба ученых совместно с Уилкинсом были удостоены за это открытие Нобелевской премии 1963 г. [c.218]


    Плетясь в гору, я начал вспоминать наши первые встречи в Лондоне. Тогда ДНК еще была тайной, которой мог завладеть каждый, но никто не мог бы сказать, кому она достанется и будет ли он ее достоин, если она действительно окажется такой поразительной, как мы в глубине души надеялись. Теперь гонка уже позади, и я, один из победителей, знал, что история была отнюдь не простой и уж, во всяком случае, совсем не такой, какой ее представляли газеты. Действующих лиц, собственно говоря, было пятеро — Морис Уилкинс, Розалинд Фрэнклин, Лайнус Полинг, Фрэнсис Крик и я. И так как Фрэнсис был главной силой, определившей мою роль в этой истории, я начну рассказ с него. [c.12]

    Экспериментальные данные о химическом составе ДНК удалось интерпретировать лишь после того, как была теоретически обоснована ее структура. В 1953 г., воспользовавшись исключительно четкими дифракционными картинами ДНК, полученными М. X. Ф. Уилкинсом, американский биолог Дж. Д. Уотсон и английский биофизик Ф. X. К. Крик предположили, что молекулы ДНК состоят из двух цепей, закрученных относительно друг друга в виде спирали таким образом, что через каждые 330 пм вдоль оси такой двойной спирали расположены остаток аденина или гуанина и остаток тимина или цитозина. При этом такие остатки образуют комплементарные пары аденин-ти-мин и гуанин-цитозин (рис. 15.21). Спаривание оснований по принципу комплементарности пояснено на рис. 15.20, из которого видно, что между аденином и тимином могут образовываться две, а между цитозином и гуанином три водородные связи. [c.456]

    Морис Уилкинс тоже приехал в Неаполь из Лондона без серьезных научных целей. Эта поездка оказалась приятным сюрпризом, которым он [c.24]

    С самого начала мы исходили из того, что молекулы ДНК содержат очень большое число нуклеотидов, соединенных в регулярную линейную цепь. И здесь наши рассуждения частично основывались на соображениях простоты. Хотя химики-органики в соседней лаборатории Александра Тодда считали, что именно таким и должно быть расположение нуклеотидной основы молекулы, они были еще далеки от того, чтобы химическим путем установить идентичность всех связей между нуклеотидами. Но если это не так, то как же в таком случае молекулы ДНК могут укладываться в кристаллические агрегаты, изучаемые Морисом Уилкинсом и Розалинд Фрэнклин Поэтому мы решили, пока не зайдем в тупик, считать строение сахаро-фосфатного остова весьма регулярным и искать такую спиральную пространственную конфигурацию, при которой все группы этого остова имели бы одинаковое химическое окружение. [c.37]

    Эта структура была найдена в результате построения молекулярных моделей с привлечением рентгеновских дифракционных данных, полученных Уилкинсом н Франклин при исследовании ориентированных волокон ДНК. За это открытие Уотсон, Крик н Уилкинс в 1962 г. были удостоены Нобелевской премии. [c.131]


    Впервые такие периодические подъемы и спады яркости свечения при нагревании люминофора наблюдал Урбах в 1930 г. Количественная теория была развита Рэндаллом и Уилкинсом [46], которые произвели [c.24]

    Исходная модель Уотсона-Крика для паракристаллической 5-формы ДНК была уточнена Уилкинсом [30] (рис. 22.1.1). Ее принципиальные особенности заключаются в том, что это закрученная правосторонняя двойная спираль, имеющая 10 остатков на период в 3,4 нм. Пары оснований фактически перпендикулярны оси спирали, а углеводные кольца практически планарны (предполагается, что они находятся преимущественно в С2-энйо-конфор-мации и под прямыми углами к основаниям). Фосфатные остатки расположены как бы на цилиндрической поверхности с радиусом примерно в 0,9 нм, считая от оси спирали, которая лежит между водородными связями, соединяющими пары оснований. [c.45]

    Автор книги — видный американский ученый Джеймс Д. Уотсон. Каждый, кто следил за последними достижениями мировой биологии, наверняка слышал его имя рядом с именами англичан Фрэнсиса Крика и Мориса Уилкинса. Эти трое ученых, получившие в 1962 году Нобелевскую премию, сделали одно из самых значительных открытий в биологии XX века установили структуру молекулы ДНК — генетического материала клетки, хранящего информацию о наследственных признаках организма. [c.4]

    За это открытие Дж. Уотсон и Ф. Крик вместе с М. Уилкинсом получили Нобелевскую премию в 1962 г. [c.108]

    Как указывают Франклин и Уилкинс при взаимодействии N26 с 1,3-бутадиеном как в различных растворителях, так и в паровой фазе образуется 1,4-д ин ит р о-2-б у тен. Доп. ред.] Дибензальацетон присоединяет ЫаО только по одной двойной связи с образованием динитропроизводного [c.218]

    Полинг считал, что предложенную им спиральную модель молекулы можно распространить и на нуклеиновые кислоты. В начале 50-х годов английский физик Морис Хью Фредерик Уилкинс (род. в 1916 г.) изучал нуклеиновые кислоты методом дифракции рентгеновских лучей, и результаты его работы можно было использовать для проверки справедливости предположения Полинга. Английский физик Фрэнсис Гарри Комптон Крик (род. в 1916 г.) и американский химик Джеймс Дьюи Уотсон (род. в 1928 г.) установили, что удовлетворительно объяснить результаты дифракционных исследований можно, лишь несколько усложнив модель молекулы. Каждая молекула нуклеиновой кислоты должна представлять собой двойную спираль, образованную навитыми вокруг общей оси цепями. Эта модель Уотсона — Крика, предложенная ими впервыев 1953г., сыграла важную роль в развитии генетики . [c.131]

    Альфред был еще не в форме, и мы решили для начала дойти до ресторанчика у подножия огромного ледника, спускающегося с Обер-Га-бельхорна, — на следующий день нам предстояло подняться на этот ледник. Не успела гостиница скрыться из виду, как мы увидели спускающуюся навстречу нам группу альпинистов. Одного из них я сразу узнал. Это был Вилли Сидз, ученый, который за несколько лет до этого работал в Кингз-колледже Лондонского университета с Морисом Уилкинсом, исследуя оптические свойства нитей ДНК. Вилли скоро заметил меня и замедлил шаг, словно намеревался сбросить рюкзак и поболтать со мной. Однако он только буркнул А, Честный Джим и быстро прошел мимо. [c.12]

    Именно Уилкинс пробудил у меня интерес к рентгеноструктурным исследованиям ДНК. Произошло это в Неаполе, на небольшой научной конференции, посвященной структурам макромолекул, обнаруженных в живых клетках. Дело было весной 1951 года, когда я еще и не подозревал о существовании Фрэнсиса Крика. Собственно, ДНК я уже занимался и в Европу приехал для изучения ее биохимии на стипендию, полученную после защиты докторской диссертации. Мой интерес к ДНК вырос из возникшего в колледже на последнем курсе желания узнать, что же такое ген. В аспирантуре Университета штата Индиана я рассчитывал на то, что для раскрытия загадки гена химия может и не потребоваться. Это отчасти объяснялось ленью в Чикагском университете я интересовался в основном птицами и всячески избегал изучения тех разделов химии и физики, которые представлялись мне хоть мало-мальски трудными. Биохимики университета на первых порах поощряли мои занятия органикой, но после того как я вздумал подогреть бензол на бунзеновской горелке, от дальнейших занятий настоящей химией я был освобожден. Намного безопаснее было выпустить доктора-недоучку, чем подвергаться риску нового взрыва. [c.20]

    Я начал прикидывать, где бы я мог научиться расшифровывать рентгенограммы. Калифорнийский технологический институт отпадал — Лайнус был слишком велик, чтобы тратить время на обучение математически недоразвитого биолога. Быть снова отвергнутым Уилкинсом мне тоже не хотелось. Таким образом, оставался только Кембридж, где, как мне было известно, какой-то Макс Перутц занимался структурой биологических макромолекул, и, в частности, молекул белка гемоглобина. Поэтому я написал Луриа о моей новой страсти, спрашивая, не может ли он устроить меня в эту кембриджскую лабораторию. Против всяких ожиданий все уладилось очень просто. Вскоре после получения моего письма Луриа на небольшой конференции в Анн-Арбор познакомился с сотрудником Перутца Джоном Кендрью, который совершал длительную поездку по Соединенным Штатам. К счастью, Кендрью произвел на Луриа хорошее впечатление — как и Калькар, он был цивилизованным человеком и к тому же поддерживал лейбористов. А тут еще выяснилось, что в кембриджской лаборатории не хватает людей, и Кендрью как раз подыскивает кого-нибудь, кто мог бы вместе с ним изучать белок миоглобнн. Луриа заверил его, что лучше меня он никого не найдет, и тут же сообщил мне эту приятную новость. [c.30]

    Почти все, кто упомянут в этой книге, живы и продолжают активно работать. Герман Калькар приехал в США и преподает биохимию в Гарвардском медицинском училище, а Джон Кендрью и Макс Перутц остались в Кембридже, где продолжают рентгеноструктурные исследования белков, за которые в 1962 году получили Нобелевскую премию по химии. Лоуренс Брэгг, перебравшись в 1954 году в Лондон, где он стал директором Королевского института, сохранил свой живой интерес к структуре белков. Хью Хаксли, проведя несколько лет в Лондоне, снова вернулся в Кембридж, где исследует механизм сокращения мышцы. Фрэнсис Крик, проработав год в Бруклине, тоже вернулся в Кембридж, чтобы изучать сущность и механизм действия генетического кода, — в этой области он последние десятилетия считается ведущим специалистом мира. Морис Уилкинс еще несколько л ет продолжал исследование ДНК, пока вместе со своими сотрудниками не установил окончательно, что основные признаки двойной спирали были найдены верно. Потом, сделав важный вклад в изучение структуры рибонуклеиновой кислоты, он изменил направление своих исследований и занялся строением и деятельностью нервной системы, Питер Полинг сейчас живет в Лондоне и преподает химию в Юниверсити-колледже, Его отец, недавно оставивший преподавание в Калифорнийском технологическом институте, сейчас занимается строением атомного ядра и теоретической структурной химией. Моя сестра, проведя много лет на Востоке, живет со своим мужем-издателем и тремя детьми в Вашингтоне, [c.128]


    Лауреаты Нобелевской премии 1962 года Морис Уилкинс, Джон Стейнбек, Джон Кендрью, Макс Перутц, Френсис Крик и Джеймс Д. Уотсон. [c.129]

    Случай Дж. Уотсона как будто опровергает эти слова. Те, кто прочли его нашумевшую книжку Двойная спираль об истории открытия структуры ДНК, нигде не заметят, что автор с утра до ночи корпит над трудными экспериментами или же изнурительными расчетами. Напротив, он увиливает от скрупулезной микробиологической работы в Европе, для которой ему выхлопотали стипендию руководители отправляется на конференцию в Италию, где откровенно отлынивает от заседаний и лишь выносит из доклада Мориса Уилкинса сведения о том, что ДНК — очень однообразная структура. А потом почему-то едет в Англию, и здесь, вместо того, чтобы погрузиться в детальные биохимические исследования, тратит время, прогуливаясь по аллеям Кембриджа с неудачником Френсисом Криком. Кстати, это в адрес Крика заметил тогда известный физик Ф. Дайсон, что ему жаль способного ученого, который упустил время, занимаясь военной наукой. А разница между военной наукой и наукой вообще такая же, как между военной музыкой и музыкой, и что вряд ли выйдет что-либо путное из нового увлечения Крика биологией. [c.131]

    Для более подробного ознакомления с этими вопросами см. гл. 4, написанную Т. Данном в книге Льюиса и Уилкинса Современная химия координационных соединений . [c.297]

    Т. Данн. Спектры поглощения комплексных соединений в видимой и ультрафиолетовой областях. Сб. статей Современная химия координационных соединений . Под ред. Дж. Льюиса и Р. Уилкинса. М., ИЛ, 1963. [c.13]

    Первой работой, посвященной аналитическому применению ИК-спектров поглощения неорганических веществ, было исследование Ф. А. Миллера и К. X. Уилкинса, опубликованное в 1952 г. в журнале Аналитическая химия (Analyti al hemistry). [c.45]

    Начиная с 50-х годов XX в. большой вклад в изучение ИК-спектров поглощения внесли ученые японо-американской школы (С. Мидзусима, К. Накамото, К. Наканиси, Ф. А. Миллер, К. Уилкинс и др.), немецкие исследователи (А. Симон, Г. Зиберт, В. Бек и др.), ученые других стран. ИК-спектры поглощения сотен неоргантеских и координационных соединений подробно изучены в шестидесягые—восьмидесятые годы XX в. в Институте общей и неорганической >лмии имени Н. С. Курнакова в Москве. В результате всех этих исследований ученых различных стран было выяснено, что ИК-спектр каждого индивидуального соединения специфичен и неповторим, подобно отпечаткам пальцев индивидуального человека, установлены интервалы групповых характеристических частот, созданы многочисленные атласы ИК-спектров поглощения различных соединений, разработаны методики количественных спектрофотометрических измерений в ИК-области спектра. [c.45]

    Вторым применением теории графов для описания химических графов является получение численных данных о химической структуре, которые могут быть использованы для корреляции с биологическими, физическими или химическими свойствами. В книге Кайера и Холла [26], в статьях Уилкинса и др. [27, 28] суммированы результаты ряда систематических исследований такого типа, которые можно с успехом применять для корреляции свойств. В некоторых недавних работах [29—33] было высказано предположение, что теоретико-графовые индексы могут также оказаться пригодными для решения проблем изоморфизма графов и различения изомеров. Тем не менее, даже когда десять индексов структуры графа комбинируются в один супериндекс для различения изомеров [27] f все же нельзя показать, что он достаточен для установления изоморфизма, и представляется, что процедура канонической нумерации является более полезным подходом к решению подобных проблем. [c.276]

    В 1953 г. Дж, Уотсон и Ф. Крик сумели правильно интерпретировать данные рентгеноструктурного анализа ДНК, накопленные в лабораториях Р. Франклин и 14. Уилкинса, и на их основе построить модель пространственной структуры ДНК- Они показали, что макромолекула ДНК — это регулярная двойная спираль, в которой две полинуклеотидные цепи строго комплементарны друг другу. Из анализа модели следовало, что после расплетания двойной спирали на каждой из полинуклеотидных цепей может быть построена комплементарная ей новая, в результате чего образуются две дочерние. молекулы, не отличимые от материнской ДНК. Через пять лет М. Мезельсон и Ф. Сталь экспериментально подтвердили этот механизм, а несколько раньше (1956) А. Корнберг открыл фермент ДНК-полимеразу, кщ-орый на расплетенных цепях, как на матрицах, синтезирует новые, комплементарные им цепи ДНК. [c.6]

    Интерфейс с холодной ловушкой. Интерфейс с холодной ловушкой (рис. 14.2-7) был разработан Уилкинсом и др. в конце 1980-х гг. как более чувствительная альтернатива интерфейсу с проточной ячейкой [14.2-8]. Впоследствии это устройство было адаптировано Гриффитсом [14.2-9]. Оно основано на криоулавливании определяемых веществ перед анализом. Хроматографический элюат непрерывно поступает через нагреваемый капилляр малого диаметра на пластину из 2п8е, охлажденную жидким азотом до 77 К. Пластина движется, перенося сконденсированную пробу в фокус микроскопа, который [c.610]

    В процессе создания этой модели были использованы многочисленные результаты работ различных исследовательских коллективов. Данные по диффракции рентгеновских лучей, полученные Уилкинсом и Франклин показывали, что нити ДНК обладают высокой степенью кристалличности и могут быть охарактеризованы как А-форма при 70%-ной относительной влажности образца и как В-форма при влажности около 90% [30]. Данные о В -форме свидетельствовали о том, что ДНК является спиралью с расстоянием в 0,34 нм между основаниями нуклеотидов и повторением спиральной конформации (период идентичности) через 3,4 нм. Уотсон заключил, что количество нуклеотидов на единицу кристаллографической ячейки находится в лучшем соотвегствии с пвунитевой. [c.43]

    Вторичная структура ДНК. Под вторичной структурой понимают пространственную организацию полинуклеотидной цепи. В 1953 г. Дж. Уотсон и Ф. Крйк, обобщив работы многих современников (М. Уилкинс, Э. Чаргафф, А. Тодд, Л. Полинг), описали вторичную структуру ДНК в виде двойной спирали (рис. 13.4). Она характерна для большинства молекул ДНК. (в настоящее время известны и другие пространственные формы ДНК). [c.444]

    С помощью этого метода была установлена а-спиральная структура двух глобулярных белков -- мйоглобина и гемоглобина (Дж. Кендрью, М. Перутц), витамина Ви и инсулина (Д. Ходжкин), двойная спираль ДНК (Ф. Крик, Дж. Уотсон, М. Уилкинс), структура фермента лизоцима и т. д. [c.512]

    Само название нуклеиновые кислоты (от лат. nu leus — ядро) показывает, что открыты они были как составная часть клеточного ядра, в котором действительно присутствуют оба класса нуклеиновых кислот — ДНК и РНК. Основным местом локализации ДНК являются структуры клеточного ядра — хромосомы, в которых ДНК находится в виде комплексов с белками — дезоксирибонуклеотидов. ДНК ( 1% от общего количества) также обнаружена в митохондриях всех типов эукариотических клеток и в хлоропластах растительных клеток. В структуре ядерной ДНК заложена информация о видовых специфических признаках, которые определяют характер данной клетки и всего организма и передаются по наследству. В цитоплазме клеток имеются значительные количества РНК, участвующие в реализации генетической информации. Важными открытиями в изучении нуклеиновых кислот, удостоенными Нобелевской премии, явились установление пространственной структуры ДНК Дж. Уотсоном, Ф. Криком и М. Уилкинсом, ферментативный синтез в бесклеточной системе биологически активной ДНК, осуществленный А. Корн-бергом и С. Очоа, блестящие исследования М. Ниренберга, Р. Холи и X. Корана, послужившие предпосылкой для расшифровки генетического кода. [c.171]

    Накопленные данные позволили сформулировать концепцию генетическая информация в полимерной цепи ДНК заключена в порядке чередования четырех мономерных звеньев. К этому времени в лаборатории М. Уилкинса (Р. Франклин) были получены первые рентгенограммы ДНК. Венцом исследований по строению нуклеиновых кислот явилась модель двойной спирали ДНК, предложенная в 1953 г. Дж. Уотсоном и Ф. Криком и ознаменовавшая рождение молекулярной биологии. [c.296]


Библиография для Уилкинс: [c.299]    [c.200]    [c.152]    [c.97]   
Смотреть страницы где упоминается термин Уилкинс: [c.12]    [c.9]    [c.17]    [c.18]    [c.27]    [c.145]    [c.184]    [c.301]    [c.772]    [c.336]    [c.337]   
Аналитическая химия. Т.1 (2001) -- [ c.45 ]

Биоорганическая химия (1987) -- [ c.135 ]

Прогресс полимерной химии (1965) -- [ c.328 , c.388 ]

Прогресс полимерной химии (1965) -- [ c.328 , c.388 ]

Успехи спектроскопии (1963) -- [ c.276 , c.279 , c.283 ]

Теоретические основы органической химии Том 2 (1958) -- [ c.222 ]

Генетика с основами селекции (1989) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатор Уилкинса



© 2025 chem21.info Реклама на сайте