Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия энергетические характеристики

    Аналогично тому, как это делается при рассмотрении влияния концентраторов напряжений на механические свойства материалов, при коррозионном поражении металла необходимо рассматривать прочностную, деформационную и энергетическую чувствительности металла к коррозионным поражениям. Таким образом, необходимо знать характеристики прочности (а , и 5 ), характеристики пластичности ( 10, ф) и ударную вязкость (а ) металла, пораженного коррозией. Хорошей характеристикой является также технологическая проба на перегиб и закручивание, очень чувствительная к изменению пластичности материала. [c.65]


    Развитие химической и электрохимической коррозии, механического и коррозионно-механического износа (механохимической коррозии) определяется энергетическими взаимодействиями в системе металл-1 — металл-2 — нефтепродукт — ПАВ — вода (электролит) (см. рис. 1). К важнейшим энергетическим характеристикам, определяющим эти процессы, относятся прежде всего характеристики самих металлов, связанные с их свойствами (пластичностью, твердостью, хрупкостью, коррозионной стойкостью и др.) работа выхода электрона из металла <р, поверхностный потенциал металла Уд, контактная разность потенциалов (КРП),, нормальный электродный потенциал V [c.18]

    Роль поляризационных явлений при осуществлении электрохимических процессов значительна. Величина и вид перенапряжения определяют многие характеристики процессов, например, структуру металлических катодных осадков, скорость коррозии металлов и др. Напряжение на клеммах электролизеров и химических источников электрического тока, а следовательно и энергетические характеристики этих систем, определяются значениями потенциалов поляризованных электродов. [c.310]

    По данной тематике опубликован ряд сведений, которые, к сожалению, носят разрозненный характер и не позволяют в полной мере использовать их для успешного решения задачи по защите от коррозии металла оборудования водо- и теплоснабжения. Цель нашей книги — восполнить этот недостаток путем обобщения результатов исследований, проведенных в этом направлении Всесоюзным заочным политехническим институтом, Всесоюзным теплотехническим институтом им. Ф. Э. Дзержинского, Московским энергетическим институтом. Энергетическим институтом им Г. М. Кржижановского, Академией коммунального хозяйства им. К. Д. Памфилова, рядом теплоэлектростанции и металлургических заводов. В книге дана характеристика противокоррозионной защиты металла оборудования подобных систем с учетом интересов ряда новых отраслей техники, предъявляющих повышенные требования к устранению потерь металла и загрязнению водной среды продуктами его коррозии. [c.4]

    Важнейшей характерной особенностью ЯЭУ является радиоактивность теплоносителя, перекачиваемого через реактор. В общем случае радиоактивность теплоносителя обусловлена наведенной активностью самого теплоносителя, активностью продуктов коррозии, загрязняющих теплоноситель, и радиоактивными продуктами деления, которые могут попасть в теплоноситель при нарушении герметичности части тепловыделяющих элементов. Для разных теплоносителей соотношение указанных выше источников активности существенно различно. Физические характеристики реактора (плотность потока нейтронов, энергетический спектр нейтронов), параметры контура циркуляции, обусловленные схемными и конструкционными решениями (период циркуляции теплоносителя, время облучения и т. п.), используемые конструкционные материалы также влияют на долю их вкладов в активность теплоносителя источников различной природы. Для иллюстрации в табл. 1.1 приведены [c.14]


    В некоторых устройствах электрод работает в парах металлов, инертных газах, окислительной среде, когда на рабочей поверхности возникают пленки адсорбированных веществ, определяющие эмиссионную способность системы. Аналогичная ситуация иногда возникает и в вакуумных условиях при использовании в качестве электродов сложных композиционных материалов с преимущественным накоцлением той или иной компоненты на поверхности электрода в процессе его работы. Поэтому возникает практически важный вопрос о поведении и энергетических характеристиках адсорбционной системы, что имеет существенное значение для лознания процессов не только электроники, но и катализа и коррозии. [c.3]

    Показано, что кинетические характеристики анодного растворения сплавов 2п-Ы1, 2п-Со, гп-Ре в МО" н НгЗОл и МО и Н1 - ток коррозии ( 1,) и потенциал саморастворения (ф ) свидетельствуют о четкой корреляции между скоростью анодного растворения и типом грани. Для обоснования полученной закономерности использованы представления о структурной (] .нк1) и энергетической (аьк и (тЬк1) эквивалентности. Чем выше Цк1, тем г]5ань более плотно упакована и тем меньше в ней расстояние между атомами. [c.25]

    Для получения мочевины применяют несколько способов Дюпон , Пещинэ , Кемико , Монтекатини , Инвента , Тоё коацу , СНАМ и Эллайд . Способы отличаются условиями проведения процесса (соотношением NH3 СОг, температурой, давлением и др.), а также схемами переработки продуктов реакции и методами защиты аппаратуры от коррозии. Главное различие способов состоит в системах рециркуляции. Все способы, за исключением Дюпон , были внедрены в промыщленность в послевоенные годы. В 60-х годах в развитых капиталистических странах происходило усовершенствование способов производства мочевины. Были разработаны процессы с полным жидкостным рециклом, которые стали использовать на крупных заводах-новостройках. Характеристики различных способов приведены в табл 14. В усовершенствованных способах энергетические затраты ниже [40—49]. [c.482]

    Следовательно, деполяризующее влияние хлористых солей в плотном бетоне обусловлено изменением не величины потенциального энергетического барьера на пути коррозии, а другой кинетической характеристики— предэкспоненцпального множителя Уо, увеличение которого означает, что повысилась вероятность включения металла. в коррозионный процесс. [c.151]

    Работы по исследованию органических жидкостей, используемых в качестве теплоносителей и замедлителей для энергетических реакторов, которые успешно проводятся в нашей стране, позволили создать установку АРБУС. Наряду с работами, посвященными исследованиям радиационно-химических и нейтронно-физических характеристик органических теплоносителей, весьма актуальны исследования их взаимодействия с керамическими материалами. Органические теплоносители являются сложными по структуре соединениями или их смесями, строение которых при протекании пиролиза и радиолиза становится еще более сложным [32, 34, 531—535]. В связи с этим воздействие на керамические материалы сравнительно простых по структуре органических соединений, например нефтяного топлива, представляет интерес для понимания процессов коррозии в более сложных по структуре органических теплоносителях. Взаимодействию этих теплоносителей с керамическими материалами до сих пор уделялось мало внимания, так как предполагалось, что неполярные органические вещества по своей природе не являются коррозионно-ак-тивными. [c.212]


Смотреть страницы где упоминается термин Коррозия энергетические характеристики: [c.89]    [c.521]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Характеристики энергетические



© 2025 chem21.info Реклама на сайте