Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость анодного растворения

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. 92 видно, что при отклонении потенциала металла в отрицательную сторону от скорость анодного растворения металла уменьшается, а скорость выделения водорода увеличивается, т. е. катодная поляризация уменьшает скорость коррозии. Катодную поляризацию можно создать от внешнего источника тока. Этот метод называют методом катодной защиты. Можно также соединить основной металл с другим металлом (протектором), который в ряду напряжений расположен левее. Часто для протекторной защиты используют магний или алюминий, при помощи которых защищают рельсы, мачты и другие конструкции. Протектор постепенно растворяется и его надо периодически заменять. Примером протекторной защиты служит также цинкование железных изделий. Железо является катодом локального элемента, а цинк—анодом. Следовательно, локальные токи вызывают коррозию покрытия, тогда как железо оказывается защищенным от коррозии. [c.214]


    Поэтому скорость анодного растворения железа равна [c.337]

    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]

    Процесс анодного растворения железа во влажных грунтах начинается с перехода в грунтовый электролит иона-атома металла, несущего положительный заряд. В дальнейшем ион-атом гидратируется полярными молекулами воды и превращается в нейтральную частицу. При недостатке полярных молекул воды происходит накапливание положительных ионов-атомов в приэлектродном слое, т.е. сдвиг потенциа а анода в положительную сторону (анодная поляризация), уменьшающий скорость анодного растворения. Таким образом, при уменьшении влажности грунта скорость коррозии снижается. Для абсолютно сухих грунтов скорость электрохимической коррозии равна нулю. [c.45]


    Выделение водорода соверщается при большой плотности тока и контролирует скорость анодного растворения цинка, на поверхности которого наблюдается плотность тока, неравномерно распределенная по поверхности металла. [c.439]

    Нередко вытеснение производят действием металла, который имеет более электроотрицательный потенциал и большую скорость анодного растворения. Например, медь может быть вытеснена со значительно лучшим коэффициентом удаления при замене никелевого порош ка железным. Образующиеся при этом ионы Ре2+ удаляют при последующей очистке от железа. [c.572]

    Б. Б. Эршлером и А. Н. Фрумкиным. Эта работа, а также работа В. А. Ройтера, В. А. Юза и Е. С. Полу ян (1939), в которой были определены скорости анодного растворения и катодного осаждения ряда металлов при помощи гальваностатических импульсов, представляют интерес как примеры первых количественных исследований кинетики электродных процессов нестационарными методами. В настоящее время нестационарные методы исследования получили чрезвычайно широкое развитие в электрохимической кинетике. Большое значение для электрохимической кинетики имели открытие и разработка Я. Гейровским (1922—1925) полярографического метода, при помощи которого были изучены многие электродные процессы. [c.11]

    Ранее предполагалось, что при сдвиге потенциала в положительную сторону скорость анодного процесса растет. Однако в определенных условиях при увеличении потенциала электрода наступает резкое падение скорости анодного растворения металла. Это явление называется пассивацией металла. Пассивация связана с изменением состояния поверхности электрода при изменении потенциала. [c.365]

    Для защиты от коррозии широко используют ингибиторы — вещества, снижающие скорости анодного растворения металла, выделения водорода или скорости обоих этих процессов. Механизм действия ингибиторов показан на рис. IX. 5. В соответствии с тем, скорости каких процессов — анодного, катодного пли обоих — замедляются, ингибиторы подразделяют на анодные, катодные и смешанного типа. Анодные ингибиторы смещают ста- [c.257]

    Рассмотрим, когда скорость анодного растворения металла велика [c.214]

Рис. П.4- иСаиость скорости анодного растворения (ор) от величины межэлектрод-ного зазора (а) Рис. П.4- иСаиость скорости анодного растворения (ор) от величины межэлектрод-ного зазора (а)
    К особенности анодных процессов относится пассивация металлов, при которой резко падает скорость анодного растворения металла [c.371]

    К особенности анодных процессов относится пассивность металлов, при которой резко падает скорость анодного растворения металла, несмотря на увеличение анодной поляризации. Как видно из рис. XVI.6, при увеличении анодной поляризации растет плотность анодного тока. При некоторой поляризации, равной АЕ , потенциал анода становится равным потенциалу [c.421]

    При постоянном значении pH раствора зависимость скорости анодного растворения железа от активности анионов являет- ся линейной с углом наклона, также равным единице (рис. 120). Если же фиксировать значение активности анионов, то зависимость скорости ионизации железа от pH раствора также является линейной с тем же значением угла наклона (рис. 121). Сосуществование двух таких функциональных зависимостей в широком интервале концентраций сульфата и гидроксил-ионов говорит о том, что эти ионы участвуют не в двух параллельно идущих реакциях с соизмеримыми скоростями, а выступают как реагенты отдельных последовательно идущих стадий. Предположение о вытеснении сульфатом ионов гидроксила также не согласуется с имеющимися результатами, т.е. в этом случае увеличение концентрации сульфата при постоянном pH должно было бы сопровождаться не-увеличением, а уменьшением суммарной скорости, так как скорость раство рения в растворах щелочи выше, чем в сульфатах. [c.216]

    Реальные процессы анодного растворения металлов сложны растворение сопровождается не только сольватацией иона, но и весьма часто предварительной химической адсорбцией анионов (С1 , ОН ) из раствора с образованием переходного, а затем устойчивого комплекса. Экспериментально химическая адсорбция анионов как стадия, предшествующая переходу металла в раствор, была обнаружена для платины, железа и некоторых других металлов. Так, скорость анодного растворения платины в соляной кислоте при постоянном потенциале оказалась пропорциональной концентрации ионов С1- в электролите. [c.416]

    Скорость ионизации железа в растворах щелочи пропорциональна концентрации ОН (в степени г)- Скорость анодного растворения индия пропорциональна приблизительно первой степени концентрации 1 , второй степени концентрации Вг , в третьей С1 . [c.416]


    Перенапряжение процесса ионизации металлов часто снижается в результате образования поверхностных комплексов с анионами электролита, причем образующийся комплекс гидратирован. Подобную активацию можно объяснить на основании теории двойного слоя при учете ф -потенциала. Гидратированный поверхностный комплекс металла с галоидом легко теряет связь с основной массой металла и переходит в раствор. Этим объясняется, например, то, что скорость анодного растворения платины при постоянном потенциале пропорциональна концентрации ионов хлора в электролите. [c.447]

    Выводы, вытекающие из анализа этих неравенств, представляют непосредственный практический интерес. Например, при анодной поляризации, когда Аф>0, неравенство (XXI. 1) непременно выполняется, а влиянием концентрационной поляризации на скорость анодного растворения металлов можно пренебречь. В катодной области, когда Дф<0, неравенство (XXI. 1) выполняется только при некоторых соотношениях между Аф и Ig (i A np), т.е. лишь в определенном диапазоне значений Дф. Следовательно, при катодном осаждении металлов необходимо учитывать и перенапряжение, и концентрационную поляризацию. [c.508]

    Таким образом, имевшийся ранее на металле ионггый скачок потенциала (рис. 24) заменяется сложным адсорбцион-но-иониым скачком потенциала. В результате происходит сдвиг пбше1о. электродного потенциала в положительную сторону и ионизация металла уменьшается. Количество кислорода по этому варианту пассивации меньше, чем требуется по расчету для создания мономолекулярного слоя. Характерным примером зависимости пассивности от количества кислорода, адсорбированного поверхностью металла по вышеупомянутому механизму, являются данные Б. В. Эршлера, согласно которым при покрытии только 6% поверхности илатииы адсорбированным кислородом ее потенциал в растворе НС1 изменяется и положительную сторону на 0,12 в и одновременно скорость анодного растворения уменьшается в 10 раз. [c.65]

    Вагнер [4] предложил уточнение первого определения металл является пассивным, если при возрастании потенциала электрода скорость анодного растворения в данной среде резко падает. Вариант металл является пассивным, если при возрастании концентрации окислителя в растворе или газовой фазе скорость окисления в отсутствие вг.ешнего тока становится меньше, чем при более низких концентрациях окислителя. Эти альтернативные определения равнозначны в тех условиях, где применима электрохимическая теория коррозии. [c.71]

    При изучении многостадийных процессов в сочетании с электрохимическими измерениями широко применяется метод радиоактивных индикаторов. В. В. Лосев и сотр. использовали этот метод для детального изучения реакций разряда — ионизации металлов на амальгамах, которые являются классическим примером многостадийных электродных процессов. На рис. 176 показаны поляризационные кривые, измеренные на амальгаме индия в растворе 1п( 104)3 с избытком N300 . Анодная поляризационная кривая была получена электрохимическим и радиохимическим методами. В последнем методе использовалась амальгама, содержащая радиоактивный изотоп индия, и скорость анодного растворения индия при постоянном потенциале определялась отбором проб раствора и измерением их радиоактивности. Радиохимический метод позволил получить истинную скорость анодного процесса не только при равновесном потенциале (т. е. непосредственно [c.337]

    Так возникло представление об элементарном акте электродного процесса. Непосредственное определение скорости реакции разряда ионов гидроксония с образованием адсорбированного атома водорода было проведено переменноточным методом в 1940 г. П. И. Долиным, Б. В, Эршлером и А. Н. Фрумкиным. Эта работа, а также работа В. А. Ройтера, В. А. Юзы и Е. С. Полуяна (1939 г.), в которой были определены скорости анодного растворения и катодного осаждения ряда металлов при помощи гальваностатических импульсов, представляют интерес как примеры первых количественных исследований кинетики электродных процессов нестационарными методами. В настоящее время нестационарные методы исследования получили чрезвычайно широкое развитие в электрохимической кинетике. Большое значение для электрохимической кинетики имело открытие и разработка Я. Гейровским (1922—1925 гг.) полярографического метода, при помощи которого были изучены многие электродные процессы. [c.12]

    Для защиты от коррозии широко используют ингибиторы — вещества, снижающие скорости анодного растворения металла, выделения водорода или скорости обоих этих процессов. Механизм действия ингибиторов показан на рис. 95. В соответствии с тем, скорости каких процессов — анодного, катодного или обоих — замедляются, ингибиторы подразделяют на анодные, катодные и ингибиторы смешанного типа. Анодные ингибиторы смещают стационарный потенциал в анодную, а катодные — в катодную сторону. Ингибиторы смешанного типа могут смещать Е в анодную или катодную сторону или не изменять его в зависимости от степени торможения соответствующих процессов. Ингибиторы смешанного типа оказываются наиболее эффективными. В качестве ингибиторов кислотной коррозии применяют разнообразные органические вещества, молекулы которых содержат амино-, ИМИНО-, тио- и другие группы. Необходимым условием ингибирующего действия этих веществ является их адсорбция на по-нерхности металла. [c.214]

    Защита металлов от коррозии может быть основана на явлении пассивности, которое состоит в том, что по достижении определенного значения потенциала скорость анодного растворения металла резко падает. Металл переходит в так называемое пассивное состояние, характеризуемое незначительными скоростями растворения. Типичная поляризационная характеристика пассивирующегося металла [c.214]

    Как видно из рис. 1Х.З, при определении с и Ес можно пользоваться поляризационными кривыми, характеризующими эффективные скорости растворения металла и выделения водорода. При коррозии с кислородной деполяризацией необходимо, кроме того, учесть поляризационную кривую ионизации кислорода. Так как растворимость кислорода в растворах электролитов не превышает 2,5-10 молЕз/л, то на этой поляризационной кривой наблюдается площадка предельного тока диффузии. На рис. IX.3 предельному току по кислороду отвечает вертикальный участок на кривой зависимости 3 от — Е. При саморастворении металла / при определении с практически можно учитывать только скорости растворения металла и выделения водорода. Саморастворение металла II происходит как за счет выделения водорода, так и за счет восстановления кислорода. Для металла III скорость саморастворения определяется скоростью диффузии кислорода к его поверхности, а потому зависит от условий размешивания, вязкости раствора других факторов. Если же металл обладает еще более низкими скоростями анодного растворения, чем металл III, то его скорость саморастворения также определяется скоростью восстановления кислорода, но уже не диффузионной стадией, а стадией разряда — ионизации. Из рис. IX.3 видно, что в присутствии кислорода возможна коррозия таких металлов, для которых выполняется неравенство о, р>ме р> н р. [c.255]

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. IX. 3 видно, что при отклонении потенциала металла в отрицательную сторону от Ес скорость анодного растворения металла уменьша- [c.256]

    Защита металлов от коррозии может быть основана на явлении пассивности, которое состоит в том, что по достижении определенного значения потенциала скорость анодного растворения металла резко падает. Металл переходит в так называемое пассивное состояние, характеризуемое незначительными скоростями растворения. Типичная поляризационная характеристика пассивирующегося металла показана на рис. IX. 6. Подъем тока при значительных анодных поляризациях обычно связан с выделением кислорода .  [c.258]

    Пасснпность, вызванная адсорбированными молекулами пли ионами, в отсутствие фазово-в]лра кенных пленок, связана со значителы[ым изменением электрического поля двойного слоя. Пассивации препягствуют ионы-активаторы, иапример иопы i , увеличивающие скорость анодного растворения. [c.369]

    Электролитическое травление и полирование широко применяются для исследования свойств и обработки полупроводниковых материалов и в технологии изготовления полупроводниковых приборов. В случае полупроводников процесс анодного растворения оказывается сильно зависящим от типа проводимости образца. Травление и полирование полупроводников п-типа в общем случае протекает значительно труднее, чем р-типа. Влияние типа проводимости на скорость анодного растворения наиболее изучено для германия. На образцах германия прямым экспериментом было доказано участие дырок в анодном процессе (Брэттен, Гэрретт). [c.217]

    Коррозии подвержены и совершенно чистые металлы с однородной поверхностью. Так как характер электролита — один из факторов, определяющих потенциал металла, то влияние среды на течение коррозионного процесса может быть очень сильным. Напюимер, смещение потенциала алюминия в сторону более отрицательньц значений в щелочной среде (—2,35 в при pH = 14, см. табл. 15) делает его более коррозионно неустойчивее. Скорость анодного растворения железа велика при малом pH и сильно замедляется при pH -> 14. Это связано с образованием нерастворимой пленки гидроокиси железа (П1) в присутствии ионов ОН. Амфотерность же 2п(0Н)2 увеличивает скорость коррозии цинка при отклонении pH от 7 как в сторону больших, так и в сторону меньших значений. [c.225]

    Сдвиг потенциала сплава в положительном направлении увеличивает скорость анодного растворения компонента А (уменьшается эиергия активации), а скорость восстановления ионов В+ падает. В конце концов наступает равновесие между ионами В+ в растворе и компонентом В в сплаве. При дальнейшем сдвиге потенциала в положительную сторону становится возможнбй ионизация обеих составляющих интерметаллической фазы, причем пересечение парциальных кривых ВВ и с кривой 5+5+ происходит в такой части, где величина фак- [c.212]


Смотреть страницы где упоминается термин Скорость анодного растворения: [c.309]    [c.41]    [c.213]    [c.213]    [c.256]    [c.372]    [c.422]    [c.440]    [c.267]   
Размерная электрохимическая обработка деталей машин (1976) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Ток анодный



© 2025 chem21.info Реклама на сайте