Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеры, теория кристаллизации

    В связи с синтезом такого большого числа стереорегулярных полимеров винилового и акрилового типов желательно более систематическое исследование микроструктуры цепей, содержащих участки мономерных звеньев с различной конфигурацией. Такие исследования были недавно начаты Колеманом [57], Хьюзом [48, 58] и Натта [49] и привели к выражениям, которые позволяют предсказать содержание в тактических участках числа мономерных звеньев п как функции коэффициентов тактичности а или р [ср. с уравнением (3) в гл. IV]. Колеман [57], основываясь на теории кристаллизации сополимеров, предложенной Флори, вывел формулы для предела точки плавления тактических полимеров как функции степени тактичности и температуры и теплоты плавления полностью тактических образцов. Таким образом, точка плавления Гу (а) полимера. [c.74]


    Общую теория кристаллизации в сополимерах дает Флори [966]. [c.262]

    В качестве первого шага для получения диффузионных уравнений, описывающих изменение свойств сополимеров с составом, рассмотрим изменение степени - кристалличности и состава аморфной фазы при переходе от одного гомополимера к другому. Согласно равновесной теории кристаллизации сополимеров [214], доля цепей, находящихся в кристаллическом состоянии, определяется соотношением [c.186]

    Общую теорию кристаллизации в сополимерах дает Флори [551]. [c.376]

    Рассмотренные теории оставляют без внимания вопрос о межмо лекулярном взаимодействии, которое в конденсированной системе макромолекул, какой является высокоэластический полимер, очень велико. Под влиянием межмолекулярных сил может произойти агрегация цепных молекул, вызывающая возникновение более крупных структурных образований — пачек, в которых поведение макромолекул будет иным, чем в изолированном состоянии. Далее, высота потенциальных барьеров изменяется во время самого процесса деформации, так как она зависит не только от взаимного отталкивания или притяжения групп, находящихся в одной н той же макромолекуле, но и от межмолекулярного взаимодействия, меняющегося во время перегруппировки цепей или их частей под влиянием приложенной механической нагрузки. Без учета межмолекулярного взаимодействия невозможно понять, каким образом осуществляется переход от высокоэластического состояния к стеклообразному или вязкотекучему и почему требуется конечный промежуток времени для превращения одних конформаций в другие. Полиэтилен, у которого межмолекулярное взаимодействие достаточно сильное вследствие кристаллизации, представляет собой сравнительно жесткий материал, в то время как сополимер этилена с пропиленом, где это взаимодействие проявляется значительно слабее, типичный эластомер. [c.380]

    Основополагающая двухфазная равновесная теория кристаллизации сополимеров была развита Флори [101]. Она исходит из строгих условий, что кристаллизующиеся повторяющиеся звенья, обозначаемые далее А, могут свободно войти в кристалл. Звенья А появляются вдоль Цепи в различных последовательностях. Во всех случаях, когда последовательность А-звеньев заканчивается некристаллизующимся Звеном В, кристалл также должен окончиться. Если все последовательности кристаллизующихся звеньев А находятся в кристаллах, размеры которых соответствуют длинам последовательностей, достигается предельное равновесие. Таким образом, такая морфология должна рассматриваться как идеальная бахромчатомицеллярная (см. также разд. 6.1.7). Некристаллизующиеся звенья В после завершения кристаллизации должны образовывать поверхностные слои кристаллов. Ни складки, ни дефекты кристаллов, ни размеры кристаллов, кроме ограничения в длине посторяющихся звеньев в направлении молекулярной цепи, во внимание не принимаются. Хотя эта теория кажется нереалистичной при сравнении с реальной кристаллизацией сополимеров, можно предполагать, что такая равновесная теория полезна для получения выражения для расчета термодинамической движущей силы кристаллизации. [c.332]


    Теория равновесной кристаллизации сополимеров предложена Флори [1]. Следуя ей, мы рассмотрим модель сополимера, который состоит только из одного типа способных кристаллизоваться звеньев, обозначаемых как А-звенья. В расплавленном (аморфном) состоянии эти звенья совершенно беспорядочно распределены по объему полимера, но в каждой отдельно взятой цепи имеется характерное распределение длин непрерывных последовательностей А-звеньев, обусловленное конкретным механизмом сополимеризации. Эти способные кристаллизоваться последовательности сочленены некристаллизующимнся участками [c.83]

    Рассмотрим прежде всего теорию Кейта с сотр. [6], согласно которой в пространство между ламелярными кристаллами вытесняются пекристал-лизующиеся компоненты, которые могут представлять собой, например, фракции полимера, неспособные к кристаллизации, сополимеры, разветвления цепей и т. п. В то же время при выбранных условиях кристаллизации некристаллизующимися компонентами могут быть также и низкомолекулярпые фракции полимера, обладающие пониженной температурой плавления, узлы зацеплений, находящиеся между ламелями, и т. п. Однако, вероятно, наиболее важное значение имеют так называемые проходные молекулы, показанные на рис. HI.55. Проходные молекулы могут образовываться, в частности, в тех случаях, когда в процессе параллельного роста ламелей отдельные длинные участки сложенной макромолекулы в одной ламели попадают на растущую грань соседней ламели. Легко понять, что проходные цепи, соединяющие между собой отдельные ламели, существенно влияют па физические свойства полимера. [c.221]

    В табл. 3 приведены значения межплоскостных расстояний для атактических сополимеров А-16 с ИПА и МА-16 с МАК. Как видно из этих данных, при введении до 50—60 мол. % сомономера сополимеры сохраняют кристаллическую структуру гексагонального типа и величину большого периода, свидетельствующую о сохранении слоевой упаковки макромолекул. Значения температур и теплот плавления для сополимеров уменьшаются с увеличением содержания ИПА. Снижение температуры плавления сополимеров происходит медленнее, чем должно быть по теории Флори, что связано с кристаллизацией сополимеров за счет боковых ответвлений. Теория Флори применима для кристаллизации линейных полимеров и не учитывает особого случая кристаллизации гребнеобразных полимеров за счет упаковки боковых цепей. Таким образом, для сополимеров гребнеобразного строения кристаллизация за счет упаковки боковых цепей осуществляется легко и в широком интервале составов, т. е. введение посторонних звеньев вносит сравнительно небольшой дефект в упаковку гребнеобразных молекул. Наоборот, при введении даже небольших количеств А-16 (4—6 мол. %) в нолинзопронил-акрилат изотактического строения последний становится аморфным, а при увеличении содержания А-16 до 10% сополимер обнаруживает все признаки гексагональной упаковки цепей, что наглядно демонстрирует влияние длинных боковых групп на способность полимеров к кристаллизации и открывает перспективы возможного регулирования этих процессов за счет введения длинноцепных мономеров в линейные полимеры путем сополимеризации. [c.147]


Смотреть страницы где упоминается термин Сополимеры, теория кристаллизации: [c.190]    [c.186]    [c.485]    [c.296]   
Синтетические гетероцепные полиамиды (1962) -- [ c.376 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллизация теория



© 2025 chem21.info Реклама на сайте