Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт, окись хемосорбция

    В общем случае при окислении необходима активация молекул кислорода и субстрата независимо от того, происходит ли реакция по стадийному механизму с последовательным взаимодействием субстрата и кислорода с катализатором или же по ассоциативному — при одновременном вступлении реактантов в активный комплекс с катализатором [434, 435]. Процесс активации реагентов заключается в их координации, вероятно, главным образом с катионом окисного катализатора. Влияние сернистых соединений на окислительные процессы мало изучено, но все же имеются сведения о дезактивации катализаторов в присутствии некоторых соединений серы (см. табл. 10). Механизм отравляющего действия сернистых ядов на катализаторы окисления мало исследован. Можно предположить, что сернистые соединения из-за особенностей их строения преимущественно хемосорбируются на окисном катализаторе, образуя с ним более прочные связи, чем несернистые субстраты, что приводит к вытеснению последних с поверхности или изменению энергии их связи с контактом. В работе [436] определено, что в присутствии сероводорода изменяется теплота хемосорбции кислорода на серебряном катализаторе окисления этилена в окись этилена. Возможно химическое взаимодействие сернистых соединений с кислородом окисла. Так, после пропускания тиофена при 450—700°С через окислы меди, марганца, никеля, кобальта уменьшается содержание в них активного кислорода, так как происходит взаимодействие тиофена с кислородом окисла [632]. [c.83]


    Величина поглощения газа даже при самых благоприятных условиях существенно меняется в зависимости от химической природы окисла и температуры и обычно включает активированную адсорбцию. Например, окись меди (И) [120] и окись кобальта (И) [121] легко адсорбируют сверхмонослойиое количество кислорода при комнатной температуре, в то время как окись никеля в подобных условиях хемосорбирует обычно только 10—20% монослоя, что связано, по-видимому, с трудностью удаления с поверхности окиси никеля предварительно адсорбированного кислорода. Степень покрытия поверхности разных окислов га-типа водородо.м или окисью углерода также существенно различается. В целом хемосорбция таких газов, как кислород, водород или окись углерода, открывает довольно широкие возможности определения удельной поверхности окислов. В то же время индивидуальные свойства окислов настолько различны, что, прежде чем переходить к количественным измерениям, необходимо иметь детальные данные по хемосорбцион-ным свойства.м отдельных компонентов, [c.332]

    О и 100° за стадией 1 будет следовать стадия 2. Это подтвердилось исследованием адсорбции кислорода на закиси меди (находящейся на подложке из металлической меди), которое показало, что при давлении ниже 1 мм при комнатной температуре адсорбируется количество, превышающее монослой. Кинетика этой хемосорбции изучалась при помощи микровесов [40]. Энергия активации для области заполнения монослоя оказалась равной 6,8 ккал/моль, но при этом, согласно уравнению Рогин ского—Зельдовича, энергия активации при поглощении должна линейно возрастать на 1,1 ккал, считая на каждый новый монослой. Скорость поглощения быстро спадает, ибо вследствие того, что возникающие вакансии не в состоянии диффундировать внутрь, создается пространственный заряд. Если газообразный кислород, находящийся над окислом, удаляют и повышают температуру, то вакансии диффундируют к границе раздела металл — окись и активность поверхности в отношении адсорбции кислорода регенерируется. Пленки закиси кобальта на кобальте ведут себя аналогично пленкам закиси меди. В этом случае теплоты адсорбции измерялись вплоть до состояния насыщения [18]. Поглощение кислорода сверх мопослойпого заполнения (стадия внедрения) сопровождается падением теплоты адсорбции и тенденцией к обратимой хемосорбции. С другой стороны, закись никеля обнаружила более низкую активность для хемосорбции кислорода, что, по-видимому, обусловлено большей трудностью регенерации поверхности [16]. Энгель и Хауффе [41] показали, что при более высоких давлениях (от 30 до 200 мм) вторую стадию поглощения можно обнаружить кинетически при 25° и это связано со внедрением кислорода в решетку, подчиняющимся уравнению (7). [c.332]


    В заключение можно сказать, что импульсный хроматографический метод раздельного измерения поверхности сложных катализаторов имеет хорошие перспективы для широкого внедрения, как простой и достаточно точный метод, в случае использования в качестве адсорбата вещества, хемосорбция которого на активном компоненте происходит быстро и необратимо, а адсорбция на носителе пренебрежимо мала. Этим требованиям лучше всего соответствуют окись углерода и кислород. Однако из-за неопределенности стехиометрии хемосорбции окиси углерода возникают трудности в использовании экспериментальных данных для расчета величины поверхности. С помощью хемосорбции кислорода при комнатной температуре получены надежные результаты для большинства металлов VIII группы. Если учесть аналогичный характер хемосорбции кислорода на таких металлах, как серебро, кобальт, хром, молибден, иридий, эсмий 89. 92-94 о ЧИСЛО ВОЗМОЖНЫХ ДЛЯ исследования систсм, в которых можно использовать этот адсорбат, должно быть значительно [c.221]


Смотреть страницы где упоминается термин Кобальт, окись хемосорбция: [c.133]    [c.312]    [c.16]    [c.37]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт окись

Хемосорбция



© 2024 chem21.info Реклама на сайте