Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемосорбция кислорода

    Поверхность катализатора обладает меньшим сродством к электрону адсорбирующегося атома или молекулы, как, например, хемосорбция кислорода на металлической поверхности. В этом случае возникает ковалентная связь за счет перехода свободных электронов из металла к кислороду (то есть кислород является окислителем). [c.94]

    Сходный тип хемосорбции кислорода осуществляется на оксидных и солевых катализаторах, где сорбция происходит по иону переходного металла. Последний окисляется при этом до высшего валентного состояния. [c.412]


    В ходе калориметрических измерений теплот хемосорбции кислорода иа окислах металлов установлено влияние диффузии в твердом теле на измеряемые величины [1.7]. [c.8]

    На основе экспериментальных данных окисление воздухом в жидкой фазе при 6 ат и 145 °С в присутствии нафтената кобальта можно рассматривать как гомогенную жидкофазную реакцию, так как скорость хемосорбции кислорода практически не зависит от объема газовой фазы. [c.160]

    Метод хемосорбции кислорода [c.89]

    На рис. 34 приведена схема газохроматографической импульсной установки для определения поверхности компонентов сложных катализаторов хемосорбцией кислорода. Методика разработана Н. Е. Буяновой с сотр. . [c.89]

    Хемосорбция кислорода поверхностью катализатора осуществляется из потока газа-носителя гелия в адсорбере 1 при комнатной температуре. Для изготовления адсорбера используют трубку из нержавеющей стали с внутренним диаметром 4 мм. Перед началом измерений исследуемый компонент катализатора должен быть обязательно восстановлен в токе водорода до металлического состояния. Температура и продолжительность восстановления зависят от типа катализатора для никелевого— 350 °С, 3—4 ч, для платинового — 500 °С, 2 ч. [c.91]

    Хаппель [42] описал наблюдаемые скорости реакций вблизи равновесия. На основании результатов экспериментов с мечеными атомами он утверждает [43—45], что вдали от равновесия лимитирующей стадией может быть хемосорбциЯ кислорода, но по мере приближения к равновесию свой вклад в снижение наблюдаемой скорости реакции может внести и скорость абсорбции диоксида серы. Поэтому можно предположить, что [c.249]

    В отношении последовательных этапов реакций окисления применим общий для случая сложных последовательных кинетических процессов принцип лимитирующей стадии. Отсюда следует, что в зависимости от величины скоростей составляющих стадий корреляция между активностью катализатора и такими его свойствами, как способность к комплексообразованию, электропроводность, величина хемосорбции кислорода, может наблюдаться или отсутствовать. В силу этого возникает кажущаяся неоднозначность связи каталитической активности твердого тела в реакциях окисления с вышеперечисленными его свойствами. [c.27]

    Хемосорбция кислорода на переходных металлах протекает с переходом электронов от металла к кислороду с образованием поверхностных оксидов металла  [c.643]


    На каждый атом металла, находящийся на поверхности раздела фаз, приходится примерно один атом хемосорбированного кислорода. При хемосорбции кислорода на оксидах переходных металлов также происходит переход электронов от катализатора к молекуле кислорода [c.643]

    Необходимость высокой удельной поверхности непосредственно вытекает из того факта, что реакции катализируются на поверхности. Когда катализатор является твердым веществом (общий случай), то большая удельная поверхность получается приготовлением твердого вещества в форме очень малых кристаллитов — с размерами от 50 до 5000 А. На рис. 2 представлены результаты типичного эксперимента, проведенного для установления связи между каталитической активностью и общей доступной поверхностью активного вещества в многокомпонентном катализаторе конверсии окиси углерода (при отсутствии диффузионных ограничений). Для измерения доступной поверхности меди была использована селективная хемосорбция кислорода размеры кристаллитов меди были измерены по расширению дифракционных линий лучей Рентгена. Между этими двумя методами было найдено хорошее соответствие в оценке геометрии поверхности меди. [c.35]

    В соответствии с существующими представлениями [92, 244], процесс окисления кокса протекает через ряд стадий. Первая стадия — хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия — разложение комплекса с образованием окиси и двуокиси углерода. Чтобы объективно оценить влияние металлов на различные стадии процесса регенерации на основании экспериментальных данных были вычислены константы скоростей образования и разложения углерод-кислородного комплекса. При этом было использовано уравнение Г. М. Панченкова и Н. В. Голованова [92], описывающее процесс выжига кокса в кинетической области. Численные [c.168]

    Некоторые металлы (особенно щелочные) и их окислы могут способствовать ускорению окисления коксовых отложений также вследствие того, что они повышают хемосорбцию кислорода в углероде и ослабляют связь углерод—углерод [245]. [c.169]

    Размеры кристалла меди и доступная поверхность меди измерены по дифракции рентгеновских лучей и хемосорбции кислорода. [c.35]

    Например, при физической адсорбции кислорода на угле при 68° К его теплота адсорбции равна 15,5 кдж/моль, причем адсорбция обратима. При хемосорбции кислорода (при 273° К) его теплота адсорбции возрастает до 300 кдж/моль, причем адсорбция становится необратимой. [c.426]

    Согласно адсорбционной теории, пассивность хрома и нержавеющих сталей, благодаря их повышенному сродству к кислороду, может достигаться путем непосредственной хемосорбции кислорода из воздуха или водных растворов. Количество кислорода, адсорбированного таким образом, имеет тот же порядок величины, что и пассивная пленка на железе, образованная путем анодной пассивации или пассивации в концентрированной азотной кислоте или хроматах [27]. Сходным образом атмосферный кислород может адсорбироваться непосредственно на железе и запассивировать его в аэрируемых щелочных растворах, а также в растворах близких к нейтральным с повышенным парциальным давлением кислорода .  [c.82]

    ДО дает восстановленный катализатор и продукты реакции. Этот механизм возможен при взаимодействии одной молекулы окисляемого ве-и ества с одной молекулой кислорода, однако при глубоком окислении, когда по стехиометрии для реализации процесса необходимо участие в реакции большого числа молекул кислорода, механизм становится маловероятным (например, для окисления одной молекулы этилена в элементарном каталитическом акте должны одновременно участвовать три молекулы кислорода, для окисления более сложных молекул необходимы десятки молекул кислорода). Стадийный механизм включает по крайней мере две стадии процесса, при этом вначале происходит стадия диссоциативной хемосорбции кислорода на катализаторе с образованием активированного комплекса. На второй стадии молекула окисляемого вещества взаимодействует одновременно с несколькими активированными комплексами с образованием продуктов реакции и восстановлением катализатора. При гетерогенно-гомогенном радикально-цепном механизме катализатор облегчает наиболее энергоемкий этап цепного процесса - зарождение цепей. Образовавшиеся радикалы органических веществ десорбируются в газовую фазу, давая начало объемному развитию цепи. Гомогенные стадии в гетерогенно-гомогенном катализе изучены пока недостаточно глубоко. Многочисленные экспериментальные данные по глубокому окислению углеводородов часто проти- [c.11]


    Стандартные теплоты образования низших оксидов металлов ( -ДН5,8 ) и начальные теплоты хемосорбции кислорода на металлах ( q ) 12  [c.12]

    Имеется несколько случаев, когда хемосорбция кислорода протекает без диссоциации на атомы. В самом деле, легко пред- [c.83]

    Атомы кислорода хемосорбируются на вольфраме И молибдене, по-видимому, преимущественно на гранях 100 [210]. При хемосорбции кислорода электроны, необходимые для образования связи, должны поставляться металлом и можно предположить, что малая величина работы выхода будет благоприятствовать этому процессу. Однако здесь, но-видимому, играют заметную роль также стерические факторы. [c.125]

    Однако в литературе имеются указания на отсутствие такой зависимости. В разделе VII, 6 мы видели, что хемосорбция кислорода на железе не ограничивается одной только поверхностью. Движение атомов (ионов) железа поверх хемосорбированных атомов (ионов) кислорода приводит к включению [c.145]

    Особым типом се,лективной каталитической реакции является отравление катализатора прн каталитическом синтезе аммиака кислородом или кислородсодержащими газами, такими, как СО, СО) и Н О. Все эти газы легко взаимодействуют с поверхностью железного катализатора, приводя к образованию на ней хемо-сорбированного слоя атомов кислорода [294]. Во время реакции с водородом эти кислородные атомы конкурируют с ато.мами азота. Поскольку хемосорбция кислорода происходит со значительно большей теплотой хемосорбции, чем азота, прис тствие в газовой смеси даже очень малых количеств кислорода вызывает серьезное отравление поверхности катализатора. [c.161]

    При исследовании влияния содержания натрия и фтора на активность алюмоплатинового катализатора в реакциях гидрирования бензола и изомеризации к-пентана было показано [110], что фтор и натрий снижают гидрирующую активность алюмоплатинового катализатора в отличие от антибатного действия этих элементов в реакции изомеризации. Добавка фтора к алюмоилатиновому катализатору уменьшает хемосорбцию кислорода на платине. [c.57]

    Вероятно, вначале протекает хемосорбция кислорода газовой фазы на восстановленных участках М-[ ] поверхности оксидов металлов (при высоких температурах — с образованием окисленных участков) [3.34]. Затем окисленный участок взаимодействует с углеродом с образованием продуктов окисления и при этом восстанавливается. При высоких температурах регенерации образование промежуточных соединений будет протекать на поверхности раздела фаз ме1алл углсрод. Схема выгорания кокса по описанно.му механизму может быть описана следующим образом [3.35]  [c.69]

    В соответствии с существующими предложениями процесс окисления кокса протекает через ряд стадий. Первая стадия - хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия - разложение комплекса с образованием окиси и двуокиси углерода. Этот процесс может протекать с большой скоростью, при этом необходимо учитывать неравномерность горения кокса во времени. В первый момент времени температура катализатора резко возрастает вследствие быстрого окисления находящихся на поверхности кокса активных веществ, богатых водородом. Подскок температуры может достигать при этом 70-80°С. Перегревы отдельных зон гранулы катализатора зависят от характера распределения кокса по объёму частицы. При невысоком содержании кокса переферия гранулы закоксована гораздо сильнее ядра. При увеличении содержания кокса эта разница быстро уменьшается. Кроме такого, диффузного по своей природе, распределения кокса, имеет место и зональное его распределение - на металле и на носителе катализатора. [c.54]

    Д.пя приготовления никельцеолитных катализаторов использовали цеолит NaX зерпегшем 0,0.1-1,0 мм, гранулированный без связующих веществ (партия. З производства онз.пного завода ГрозНИИ). Методика введении карбонила никеля и цеолит и его разложение описаны в работах [3, 4]. Содержание никеля в образцах определяли комплексометрическим [5], а его поверхность — xpo. [aтoгpaфичe ким методами но величине хемосорбции кислорода. Среднюю дисперсность никеля рассчитывали для кубической [c.335]

    Механизм, который предложили Кабрера и Мотт (]949 г.), исходит и из существования на металле образовавшейся в процессе хемосорбции кислорода пленки, в которой ионы и электроны движутся независимо друг от друга. При низких температурах диффузия ионов через пленку затруднена, в то время как электроны могут проходить через тонкий еще слой окисла либо благодаря термоионной эмиссии, либо, что более вероятно, вследствие туннельного эффекта (квантово-механического процесса, при котором для электронов с максимальной энергией, меньшей, чем это требуется для преодоления барьера, все же характерна конечная вероятность того, что они преодолеют этот барьер, т. е. пленку), обусловливающего высокую проводимость окисной пленки при низких температурах. При этом на поверхности раздела металл— окисел образуются катионы, и на поверхности раздела окисел— газ—анионы кислорода (или другого окислителя). Таким образом, внутри окисной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т. е. более заторможенным, процессом. [c.48]

    Хемосорбционные слои или экранируюш,ие пленки в большинстве случаев тормозят протекание анодного и катодного процессов примерно в равной степени их действие иногда связано с дополнительными эффектами (например, увеличением хемосорбции кислорода и др.). [c.350]

    В работах Ройтера, а также Голодца с сотрудниками [38—411 рассмотрены результаты но применению ЛССЭ к реакциям гетерогенно-каталитического окисления. Авторы установили наличие хорошей линейной взаимосвязи между теплотой хемосорбции кислорода на катализаторе и активностью последнего в реакциях полного окисления углеводородов, а также наличие восходящей и нисходящей ветвей в такой зависимости. Аналогичные результаты получены Боресковым и сотрудниками для реакции окисления СН4 и На в отношении теплоты десорбции кислорода для ряда окисных катализаторов [421. [c.162]

    Дадаян К. А., Савченко В. И., Боресков Г. К. Изучение хемосорбции кислорода и начальной стадии окисления монокристалла никеля с ориентацией (100) методами дифракции медленных электронов и оже-спектро-скопии.— Кинетика и катализ, 1977, т. XVIII, вьш. il, с. 189—194. [c.25]

    Полученные в работах [105, 106] результаты являются доказательством того, что выгорание углерода на исследуемых катализаторах протекает по стадийному механизму. Аналогично представлениям о механизме окисления кокса, развиваемым в работах [98, 99], в работе [104] предполагается, что вначале протекает хемосорбция кислорода газовой фазы на тосстановленных участках М-[ ] поверхности оксидов металлов (при высоких температурах, в частности, на поверхности металлов) с образованием окисленных участков. Затем окисленный участок взаимодействует с углеродом с образованием продуктов окисления и при этом восстанавливается. [c.41]

    Было установлено [121], что первой стадией окисления кокса на аморфном алюмосиликатё тляется хемосорбция кислорода с образованием стабильного комплекса Oi, на поверхности и увеличением массы катализатора. Время существования комплекса при низких температурах составляет 12—17 мин [122 и резко уменьшается с ростом температуры регенерации [124]. Аналогичное явление наблюдается и на порошковом цеолитсодержащем катализаторе Цеокар-2 при изучении его закоксовывания и регенерации на лабораторной установке с непрерывным определением массы образца (рис. 4.42). Температура крекинга и регенерации составляет 500°С. Участок кривой D соответствует увеличению массы катализатора вследствие хемосорбции кислорода. [c.149]

    Механизм каталитического окисления исследован Твиггом [11]. При окислении происходит прочная хемосорбция кислорода на поверхности серебра. Скорость образования окиси этилена пропорциональна концентрации кислорода в первой степени. Скорость полного окисления пропорциональна квадрату этой концентрации. Твигг предполагает, что, если молекула этилена приближается к двум атомам кислорода, близко расположенным друг от друга на поверхности серебра, окисление протекает до двуокиси углерода через промежуточное образование формальдегида. В том случае, когда атомы кислорода отстоят далеко друг от друга, образуется окись этилена. [c.161]

    Использование металлов в качестве катализаторов окисления ограничивается требованием химической стабильности металла он не должен, с одной стороны, образовывать прочных окислов, то есть иметь низ-ку10 (до 170 кДж/г-атом О [12] ) теплоту образования устойчивых окислов и, с другой - иметь низкую теплоту хемосорбции кислорода, что позволяет катализатору легко отдавать кислород окисляемому веществу. Как видно из табл. 1.2, вышеуказанному набору требований лучше других металлов соответствуют платина, палладий и рений. [c.12]

    В результате адсорбции водорода по этому механизму следует ожидать усиления тенденции к хемосорбции кислорода, что в действительности и имеет место. Можно предположить, что кислород, хемосорбирующийся после десорбции воды, будет заполнять вакантные участки поверхности. В применяемом схематическом способе изображения поверхностных явлений мы представляем себе, что слой адсорбированных частиц располагается над слоем поверхностных атомов, В действительности последний часто имеет вакантные участки, которые адсорбирующиеся атомы или ионы могут заполнить. Как мы увидим в одном из последующих разделов (VII, 6), адсорбированные атомы или ионы и атомы или ионы поверхности адсорбента часто могут меняться своими местами, и поэтому адсорбция не ограничивается только внешней поверхностью. [c.64]

    При комнатной и более высоких температурах молекулы, связанные с поверхностью вандерваальсовыми силами, постепенно становятся хемосорбированными [51]. Эта особенность кислорода отчетливо обнаруживается в его способности катализировать (благодаря парамагнитным свойствам) реакцию орто-пара превращения водорода. Будучи адсорбированным на угле при низких температурах, кислород ускоряет эту реакцию, но если адсорбция происходит при более высоких температурах, то он оказывает отравляющее действие [132, 133], Следовательно, для протекания реакции кислорода с поверхностью угля требуется энергия активации. В случае адсорбции на металлах энергия активации может быть ничтожно малой или даже равна нулю. Па поверхности цезия при температуре жидкого воздуха кислород самопроизвольно образует хемосорбционный слой молекул поверхностного окисла. Вполне возможно, что этот хемосорбционный процесс не имеет диссоциативного характера (см. далее настоящий раздел). На пленке молибдена, полученной испарением металла в высоком вакууме, переход от физической адсорбции к хемосорбции требует более высоких температур. Этот переход может быть обнаружен по уменьшению электропроводности пленки в результате хемосорбции кислорода [78]. Аналогичная картина наблюдается при адсорбции кислорода на никеле и платине [53]. [c.83]

    В ЭТИХ процессах диссоциативная хемосорбция кислорода не может играть существенной роли. Они, вероятно, протекакзт чере хемосорбцию ионов Оа (или молекул Оа, которые образуют ковалентную связь, находящуюся в резонансе с ионной связью). [c.86]


Смотреть страницы где упоминается термин Хемосорбция кислорода: [c.48]    [c.419]    [c.332]    [c.323]    [c.26]    [c.643]    [c.30]    [c.63]    [c.65]    [c.83]   
Смотреть главы в:

Катализ. Некоторые вопросы теории и технологии органических реакций -> Хемосорбция кислорода

Адсорбция, удельная поверхность, пористость -> Хемосорбция кислорода

Катализ новые физические методы исследования 1959 -> Хемосорбция кислорода


Адсорбция, удельная поверхность, пористость (1970) -- [ c.13 , c.293 ]

Двойной слой и кинетика электродных процессов (1967) -- [ c.309 ]

Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.399 ]

Гетерогенный катализ (1969) -- [ c.35 ]

Инженерная химия гетерогенного катализа (1971) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Хемосорбция



© 2025 chem21.info Реклама на сайте