Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемосорбция обратимость

    В отличие от физической адсорбции химическая адсорбция, или хемосорбция, осуществляется при помощи химических сил. Эти виды адсорбции имеют следующие отличительные признаки физическая адсорбция — явление обратимое, и теплота ее составляет всего 8,4—33,5 кДж/моль, в то время как теплота химической адсорбции достигает десятков и сотен кДж/моль. С повышением температуры физическая адсорбция уменьшается, а химическая увеличивается. Объясняется это тем, что химическая адсорбция требует более значительной энергии активации (40—120 кДж/моль). [c.348]


    При этом атомарный (или ионный) водород, предварительно адсорбированный на катализаторе в непосредственной близости от реагирующей молекулы углеводорода, входит в состав переходного комплекса и далее, после перераспределения электронной плотности, регенерируется уже в молекулярном виде. Наличие поляризованного (и даже ионного) водорода на поверхности металлов в условиях реакции подтверждается работами различных авторов [129—131]. Так, после анализа экспериментальных данных, полученных при изучении адсорбции водорода на Pt, Ni и других металлах в условиях глубокого вакуума, сделан вывод [130] о существовании двух основных видов хемосорбции водорода слабой (обратимой) и прочной (необратимой). Слабо хемосорбированный водород находится, как правило, в молекулярной форме и несет при этом положительный заряд (М —Hj). При прочной хемосорбции водород диссоциирован и заряжен отрицательно (М+—Н-). При анализе состояния водорода в гидридах различных металлов [131] сделан вывод, что в гидридах большей части переходных металлов водород находится в двух формах Н+ и Н при этом форма (М+—Н ) является основной. [c.231]

    Обратимость адсорбции. Физическая адсорбция всегда обратима, благодаря чему в системе устанавливается равновесие адсорбция десорбция. При хемосорбции в определенных условиях величина энергии связи при данной температуре может стать на столько большой, что процесс практически становится необрати мым. Десорбция адсорбированного вещества возможна в резуль тате сильного повышения температуры или понижения давления При этом иногда десорбируемое вещество изменяет свою природу десорбируясь в виде химических соединений другого состава. Так например, образуется ШОз при десорбции кислорода с вольфрама или СО2 при десорбции СО с окислов. [c.35]

    Физическая адсорбция и хемосорбция различаются прочностью связи между адсорбируемым веществом и адсорбентом, обратимостью физической и необратимостью химической адсорбции. Неспецифичность физической адсорбции обусловлена тем, что при достаточно низких температурах любые газы адсорбируются на любых поверхностях. Хемосорбция же наблюдается только при химическом родстве адсорбента и адсорбата. Физическая адсорбция происходит почти мгновенно, как только молекулы адсорбата приблизятся к поверхности адсорбента, если она не осложняется побочными процессами (медленной диффузией ад- [c.38]


    Физическая адсорбция, в отличие от хемосорбции, обратима, Обратный процесс удаления молекул с поперхности адсорбента называется десорбцией. Последняя также может применяемся как метол очистки. [c.129]

    Импульсный метод состоит во введении в поток газа-носителя перед адсорбером с исследуемым катализатором известной порции адсорбата. Если происходит необратимая хемосорбция, то часть порции прочно связывается с адсорбентом, а излишек проходит через адсорбер и его определяют по площади выходного пика. Адсорбированный объем определяют по разности введенного и вышедшего из адсорбера адсорбата. Если хемосорбция обратима, то по растянутой границе хроматограммы известными методами вычисляют изотерму адсорбции, полагая, что соблюдаются условия равновесной хроматографии. [c.217]

    Известно, что хемосорбция часто является в той или иной степени необратимой, т. е. путем десорбции (при той же температуре, при которой производили адсорбцию) не удается снять с поверхности полностью все хемо-сорбированное вещество. Для полной десорбции требуется, как правило, существенное повышение температуры. Можно предположить, что это результат сосуществования на поверхности двух форм хемосорбции обратимой, при которой адсорбат уходит с поверхности при откачке, и необратимой, при которой он за время опыта практически полностью сохраняется на поверхности. [c.144]

    Тем не менее в большинстве случаев природу явления можно тан ить, исследовав величину теплового эффекта процесса. При уменьшении свободной поверхностной энергии в процессе адсорбции выделяется теплота адсорбции . Очевидно, что в процессе хемосорбции выделяется значительно большее количество тепла, чем в процессе физической адсорбции. В первом случае теплота адсорбции по порядку величины близка к теплоте химических реакций, во втором — к теплоте конденсации. Существуют и другие, менее общие признаки различия, например характер изотерм, кинетика процесса, его обратимость и др. [c.106]

    Обратимая хемосорбция и катализ становятся возможными в случае переходных металлов, в которых атомные ядра имеют незаполненные -оболочки, способные участвовать в образовании координационных связей. [c.31]

    Было показано, что обратимая адсорбция водорода на металлах представляет собой молекулярную хемосорбцию, причем молекула хемосорбированного водорода является положительным концом диполя Ме — Нг (условно Ме — На ). Адсорбция водорода при —195 °С протекает крайне быстро и сопровождается распадом его молекул на атомы. Однако уже при этой температуре происходит рекомбинация хемосорбированных атомов водорода, и на части поверхностных атомов металла, свободной от атомарного водорода, происходит обратимая равновесная хемосорбция его молекул. Взаимодействие между электронами металла и адсорбированным водородом сопровождается поглощением теплоты [30 . [c.19]

    Адсорбция водорода на слоях металлов Си, Ag, 2п, Сс1 при температурах от —195 до 50—200 С и давлениях от 10 до 2- 10 2—4-10"2 мм рт. ст. происходит практически мгновенно и не сопровождается растворением газа в металле при образовании прочных поверхностных соединений. В этом случае она незначительна, примерно пропорциональна давлению, равновесна и обратима. Адсорбция водорода на указанных металлах является молекулярной хемосорбцией, не связанной с диссоциацией На на атомы [31]. [c.20]

    В пользу физической точки зрения говорит прежде всего доказанное рентгенографическими исследованиями размещение внутри кристаллической решетки карбамида молекулы углеводорода, тем более что возможность такого размещения определяется не химической природой взаимодействующих веществ, а размерами молекул и каналов. Высвобождение из комплекса некоторой части входящих в его состав молекул при дроблении комплекса [45] является также подтверждением физического представления о структуре комплекса и о процессе комплексообразования. Циммершид [20] и Бейли [21] считают, что комплексообразование есть одна из форм адсорбции, в основе которой лежит проникновение молекул одних веществ вглубь кристаллической решетки других веществ и которая определяется формой молекул адсорбируемого компонента. При этом проводится аналогия между взаимодействием нормальных парафинов с карбамидом и взаимодействием их с минералами шабазптом и анальцитом, входящими в группу цеолитов, поскольку эти минералы также соединяются только с парафинами нормального строения и не взаимодействуют ни с изопарафиновыми, ни с нафтеновыми, ни с ароматическими углеводородами. Как известно, при физической адсорбции (в отличие от хемосорбции) молекулы адсорбируемого вещества сохраняют свою индивидуальность с увеличением давления и с понижением температуры количество адсорбируемых молекул увеличивается физическая адсорбция обратима. Эти же закономерности имеют место и при комплексообразованпи — молекулы нормальных парафинов, вступая в комплекс, не претерпевают никаких изменений. Увеличение давления позволяет вовлечь в комплекс нормальные парафины с относительно короткими цепями, Которые при нормальном давлений комплекса Не образуют. Понижение температуры в определенных пределах ведет к усилению комплексообразования обратимость комплексообразования доказана многочисленными экспериментами. [c.25]


    Например, при физической адсорбции кислорода на угле при 68° К его теплота адсорбции равна 15,5 кдж/моль, причем адсорбция обратима. При хемосорбции кислорода (при 273° К) его теплота адсорбции возрастает до 300 кдж/моль, причем адсорбция становится необратимой. [c.426]

    Упомянутая выше обратимая хемосорбция окиси углерода на окиси цинка не вызывает увеличения адсорбции кислорода. [c.63]

    Помимо обратимости и экзотермичности, адсорбция характеризуется и третьим общим признаком — чрезвычайно малой энергией активации, т. е. низким энергетическим барьером, а следовательно, большой скоростью протекания. Благодаря этому адсорбция с энергетической стороны имеет много сходного с обратимыми экзотермическими химическими реакциями, однако отличается от них и от хемосорбции гораздо меньшей величиной теплового эффекта. [c.198]

    Говоря об адсорбции органических веществ на электродах, целесообразно выделить системы с обратимой и необратимой адсорбцией. Для первых систем характерно сравнительно слабое ( физическое ) взаимодействие молекул адсорбата с электродом (как правило, это з, р-металлы Н , РЬ, Т1, 1п, Зп, В1 и др.). Адсорбция в этих системах подчиняется законам термодинамики, а поверхностную концентрацию адсорбата можно однозначно связать с его объемной концентрацией уравнением изотермы адсорбции. Для систем с необратимой адсорбцией характерно очень сильное ( химическое ) взаимодействие органических молекул с поверхностью электрода, которое нередко сопровождается деструкцией этих молекул, например разрывом связей С—Н и С—С. Такая хемосорбция органических веществ происходит, как правило, на электродах из переходных, или /-металлов, из которых наиболее полно изучены металлы платиновой группы и прежде всего сама платина. Понятия адсорбционного равновесия и изотермы адсорбции к этим системам не применимы. В самом деле, электрод с необратимо адсорбированным на нем органическим веществом можно извлечь из раствора, промыть водой и погрузить в раствор электролита, но без органического вещества при этом количество хемосорбированного вещества на электроде остается [c.4]

    Закономерности адсорбции органических соединений на электродах из -металлов существенно отличаются от описанных выше для электродов из р-металлов. Сложный деструктивный характер хемосорбции органических веществ на платиновых металлах из газовой фазы был установлен достаточно давно и детально изучается в работах по катализу. В электрохимической литературе до начала 60-х годов трактовка всех экспериментальных результатов основывалась на предположении, что на платиновых металлах, как и на ртути, органические молекулы адсорбируются обратимо и без распада. Однако накопленный к настоящему времени большой экспериментальный материал, как уже отмечалось во введении, убедительно показывает, что на электродах из металлов группы платины адсорбция органических веществ в большинстве случаев сопровождается глубокими химическими превращениями, которые, как правило, необратимы. [c.86]

    Другие рассмотренные ниже виды адсорбции относят к физической адсорбции, которая протекает под действием сил Ван-дер-Ваальса адгезионного характера. Физическая адсорбция является обратимым экзотермическим процессом при повышении температуры адсорбция уменьшается, а десорбция усиливается. Теплоты физической адсорбции невелики и обычно составляют 8— 20 кДж/моль. Физическая адсорбция не носит специфического избирательного характера. Хемосорбция, напротив, специфична. Она зависит как от природы адсорбента, так и от природы адсорбата. Энергия связи адсорбент — адсорбат достаточно велика и примерно равна теплоте образования химических соединений (80—800 кДж/моль). С повышением температуры хемосорбция возрастает, подчиняясь законам химической кинетики и равновесия гетерогенных реакций. Хемосорбция часто необратима и приводит к образованию прочных поверхностных соединений между адсорбентом и адсорбатом. [c.328]

    Промежуточный продукт реакции Н1 образуется в первой стадии процесса и разлагается во второй. В образовании Н1 участвует катализатор, но к концу взаимодействия он полностью регенерируется. Гетерогенный катализ. Гетерогенный катализ всегда начинается с адсорбции молекул исходных веществ на поверхности твердого катализатора. При этом только обратимая адсорбция является началом каталитической реакции. Необратимая хемосорбция приводит к образованию на поверхности катализатора устойчивых соединений и тем самым к снижению активности катализатора. [c.143]

    Различают физическую, или вандерваальсовскую, адсорбцию и химическую адсорбцию, или хемосорбцию. При физической адсорбции адсорбционные силы имеют ту же природу, что и силы Ван дер Вааль-са, вызывающие конденсацию газа. Физическая адсорбция всегда обратима. При химической адсорбции адсорбционные силы имеют химическую природу. Хемосорбция обычно необратима. [c.36]

    Гетерогенный катализ. Гетерогенный катализ всегда начинается с адсорбции молекул исходных веществ на поверхности твердого катализатора. При этом только обратимая адсорбция Является началом каталитической реакции. Необратимая хемосорбция приводит к образованию на поверхности катализатора устойчивых соединений и тем самым к снижению активности катализатора. [c.140]

    Рассмотренный материал покрывает, что теория Лэнгмюра недостаточна для описания адсорбции на границе твердое тело — газ (в отличие от границы раствор —газ) и применима лишь в некоторых случаях обратимой хемосорбции Оа Ю ккал/моль). Тем не менее, рассмотрение этой теории представляет интерес прежде всего потому, что она является необходимой ступенью для понимания всех последующих теорий. [c.141]

    Уравнение Ленгмюра составило эпоху как в теории адсорбции и хемосорбции, так н в основанной на ней теории гетерогенного -катализа однако оно -применимо только к обратимым равновесным процессам и не может быть приложено к описанию процессов хемосорбции с образованием сильных химических связей. Переход от газа с давлением р к раствору концентрации с, граничащему с твердой поверхностью вещества (адсорбента), существенно не изменяет логических предпосылок изложенного вывода, так что уравнение Ленгмюра может быть применимым и к описанию локализованной адсорбции из раствора на твердой поверхности. [c.62]

    Уравнение Ленгмюра составило эпоху как в теории адсорбции и хемосорбции, так и в основанной на ней теории гетерогенного катализа. Оно применимо только к обратимым равновесным процессам и не может быть приложено к описанию процессов хемосорбции с образованием химических связей. Переход от рассмотрения газа с давлением р к рассмотрению раствора концентрации с, граничащему с твердой поверхностью вещества [c.75]

    Наконец, сорбция может сопровождаться возникновением между сорбирующимся соединением и повелхностью прочной химической связи и, следовательно, образованием нового химического соединения на поверхности хемосорбция). Такой механизм осуществляется на природных и синтетических сорбентах с ионогенными и хелатообразующими группами. В отличие от физической адсорбции хемосорбция обратима не полностью. Использование синтетических сорбентов с ионогенными и хелатообразующими группами наиболее эффективно, и их широко применяют для селективного разделения макро- и мнкрокомпонентов и для группового и селективного концентрирования микрокомпонентов. [c.241]

    Попадающие на подложку или пленку молекулы газов химически фиксируются на ней только в том случае, если их энергия связи с веществом подложки или пленки Е ( газ — пленка ) значи-тельна например 1>1 эВ (химическое сродство). Обычно для системы газ—подложка энергия связи 2<1 эВ (вандерваальсовы силы связи) и газовая молекула после незначительного пребывания на подложке вновь ее покидает. Например, кислород хемосарбиру--ется пленками вольфрама и никеля, но не пленкой окисла АЬОз, с которым он не имеет химического сродства. Существенно, что в, большинстве случаев хемосорбированный кислород удаляется толь-, ко в составе химического соединения, т. е. в противоположность физической адсорбции хемосорбция обратима неполностью. [c.131]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    С повышением температуры рекомбинация атомов водорода усиливается. Это приводит к повышению интенсивности обратимой молекулярной хемосорбции водорода. Сочетание атомарной и молекулярной хемосорб- [c.19]

    Как видно из рис. 22, при 132° скорость и величина адсорбции больше, чем при 100°. Это непонятное явление было объяснено Г. Тейлором. Он предложил для дифференциации между первичной и вторичной адсорбцией принять обратимость процесса и количество выделенного тепла. Вторичная, или обратимая, адсорбция имеет обычно малую теплоту адсорбции, т. е является физической, или вандерваальсовой, адсорбцией. Первичная, или необратимая, адсорбция показывает высокие теплоты адсорбции и большие значения энергии активации. Необратимая адсорбция, или хемосорбция, ускоряется с повышением температуры так же, как и обычные химические реакции. Поэтому она была названа активированной адсорбцией. Величину энергии активации Е для последней легко можно вычислить по скоростям адсорбции при разных температурах, т. е. по температурному коэффициенту. Если принять, что при температурах и Та скорости адсорбции будут соответственно и, и v. , то Е находят по обычной формуле  [c.117]

    Представляет интерес упомянуть о том, как развивались представления о механизме орто-пара-превращегпш водорода. В течение длительного времени счита.лось, что теплота хемосорбции атомов водорода слишком велика, чтобы они могли взаимодействовать друг с другом на поверхности с образованием молекулярного водорода. Считалось даже, что хемосорбция водорода прн комнатной и более низких температурах необратима, В дальнейшем было установлено [301], что при достаточно высоких давлениях водорода происходит нормальная обратимая хемосорбция, Уменьшение теплоты хемосорбции с увеличением ад-сорбирован1 ого количества оказалось настолько значительным, что при тех значениях О, которые имеют место во время каталитических реакций, теплоты хемосорбции достаточно малы, чтобы каталитическая реакция была возможна. [c.167]

    Да1П1ые, взятые для построения этих кривых, были получены в описанном выше опыте по обратимой хемосорбции гидропере- [c.344]

    Различают физическую, или ван-дер-ваальсову, адсорбцию и химическую адсорбцию, или хемосорбцию. В первом случае адсорбционные силы имеют ту же природу, что и межмолекулярные, или ван-дер-ваальсовы, силы. Физическая адсорбция всегда обратима. При химической адсорбции адсорбционные силы имеют химическую природу. Хемосорбция обычно необратима. В нашем курсе мы будем рассматривать, главным образом, физическую адсорбцию и лишь в соответствующем месте укажем на принципиальное различие между обоими видами адсорбции. [c.81]

    Иногда ионообменную хроматографию рассматривают как частный случай хемихроматографии, учитывая, что она основана на обратимой хемосорбции ионов на НФ. [c.266]


Смотреть страницы где упоминается термин Хемосорбция обратимость: [c.15]    [c.12]    [c.15]    [c.121]    [c.137]    [c.220]    [c.29]    [c.426]    [c.268]    [c.63]    [c.65]    [c.342]    [c.115]    [c.112]    [c.332]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Хемосорбция



© 2024 chem21.info Реклама на сайте