Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановительное действие сернистого водорода

    Химические факторы — состав и реакция среды, а также ее окислительно-восстановительные действия. В окружающей среде могут содержаться вещества, которые стимулируют или ингибируют жизнедеятельность микроорганизмов. Стимулируют жизнедеятельность микроорганизмов различные загрязнения. Они же являются важнейшим фактором инициирования процесса биоповреждений. Биоцидное действие для многих микробов оказывают соли тяжелых металлов (ртути, свинца, серебра, меди), галогены, некоторые галоиды и окислители, особенно хлорид бария, перекись водорода, перманганат и бихромат калия, борная кислота, углекислый и сернистый газы, фенол, крезол, формалин. Природа действия этих веществ различна, результат практически один — гибель [c.18]


    Электрокоррозия. Окислительно-восстановительный процесс, сопровождающийся окислением данного металла и восстановлением окислителя на его поверхности, называется коррозией этого металла. Коррозия может быть химической и электрохимической. Если металл взаимодействует с сухим, т. е. лишенным влаги, газом (кислородом, сернистым газом, сероводородом, хлористым водородом и т. п.) или с жидким неэлектролитом (бензином, смолой и т. п.), то коррозия называется химической. Коррозия называется электрохимической, когда при соприкосновении металла с влажным воздухом или с растворами электролитов образуются непрерывно действующие гальванические микроэлементы, в которых более активные составные части металла служат отрицательными электродами- (анодами) и поэтому окисляются, а менее активные — положительными электродами (катодами), на которых окислители восстанавливаются. В случае совершенно чистых металлов активными участками (анодами) являются более мелкие кристаллики, ребра, вершины или более значительные дефекты решетки, а менее активными (катодами) — более крупные кристаллики, грани и менее значительные дефекты кристаллической решетки. Например, в сталях катодными участками являются различные карбидные включения, а анодными — сам металл (железо). [c.310]

    Раньше восстановительное действие сернистой кислоты приписывали сродству этого веще.ства к кислороду. Если кислород получался из воды, то предполагали, что водо.род в момент своего освобождения способен вызывать (восстановление, которо.го водород в обыкновенном состоянии не может производить. Точно так же, когда цинк реагирует с разбавленной кислотой, то выделяется водород и по той пртине, что Ц инк в присутствии разбавленной кислоты вызывает восстановление, кото.рого водород в нормальном состоянии не способен производить, стали обыкиовенно приписывать это восстанов ителпкое действие водороду в состоянии выделеиия.  [c.50]

    Задача была, наконец, решена разделением парофазной гидрогенизации на две стадии. Сначала под действием концентрированного 5,-катализатора, оказывающего сильное восстановительное и гидрирующее действие, масла очищали от фенолов и оснований и доводили содержание водорода в маслах до содержания его в нефтяных средних маслах. Для этой стадии предварительной гидрогенизации впоследствии оказался пригодным разбавленный глиноземом 32-катализатор с незначительной добавкой сернистого никеля. Такой ката- [c.117]

    Gunther предложил использовать выделяющиеся при растворении цинка в разбавленной серной кислоте газы для определения мышьяк а,, сурьмы и серы путем пропускания их через последовательно расположенные промывалки с растворами уксуснокислог кадмия и азотнокислого серебра. Метод этот неправилен, так как выделяющийся сероводород может образоваться не только из содержащейся в цинке серы, но и вследствие побочных восстановительных реакций, например, при действии водорода на сернистую кислоту, образующуюся, в свою очередь, из серной кислоты под влиянием содержащихся в и инке примесей. Вследствие этого определение серы по количеству выделившегося сернистого кадмия может повести к слишком высоким результатам. Точно также и осадок в промывалке с азотнокислым серебром не соответствует выделившимся мышьяковистому и сурьмянистому водородам. 2 Наконец, восстанавливать азотнокислое серебро может и фосфористый водород, образующийся за счет небольшого содержания, фосфора. [c.585]


    Действуя на синие раствэры солей окиси меди сернистою, фосфористою кислотою и тому подобны йи низшими степенями окисления, можно получить бесцветные растворы солей закиси меди. Особенно ясно и легко совершается это при помощи серноватистонатровой соли Na S O , которая при этом окисляется. Закись меди может быть получена не только чрез раскисление окиси меди, но также непосредственно из самой металлической меди, потому что это последняя, окисляясь при накаливании на воздухе, дает сперва заквсь меди. Так ее и приготовляют в большом виде, нагревая медные листы, свернутые в спираль, в отражательной печи. При этом требуется наблюдать,- чтобы воздух не был в большом избытке и чтобы образующийся слой красной закиси меди не начал переходить в черную окись меди. Если, затем, окисленный лист меди разгибать, то хрупкая закись меди отлетает от мягкого металла. Полученная таким образом закись легко плавится. Окись меди, при прокаливании с порошкообразною медью (а такой порошок меди получают многими способами, напр., погружая в раствор медной соли цинк, или прокаливая окись меди в водороде), дает легкоплавкую закись меди Си - СиО = Си О. Природная и искусственная закись меди имеет уд. вес 5,6. Она в воде нерастворима, на воздухе (безводная) не изменяется, при прокаливании же поглощает кислород, образуя СиО. При действии кислот закись образует раствор соли окиси и металлическую медь, напр. Си О - - №SO = u + uSO -f- №0. Однако крепкая соляная кислота, растворяя закись меди, не выделяет металлической меди, что происходит вследствие того, что образующаяся u l растворима в крепкой соляной кислоте. Закись меди растворяется также и в растворе аммиака, и тогда, без доступа воздуха, получается бесцветный раствор, синеющий на воздухе и поглощающий кислород, от превращения закиси в окись. Посиневший [раствор] может быть обратно переведен в бесцветный, от погружения медной пластинки, потому что металлическая медь раскисляет окись, находящуюся в аммиачном растворе, в закись. Закись меди, сплавленная со стеклом и солями, образующими стеклообразные сплавы, окрашивает их в красный цвет, и такое стекло употребляется для украшений. Этим можно пользоваться для открытия меди посредством паяльной трубки нагревая взятое медное соединение с бурою в пламени паяльной трубки, в восстановительном пламени получают красное стекло, а в окислительном пламени — зеленое от перехода закиси в окись. [c.635]

    Фтористый водород, хранивпшйся в железных цилиндрических баллонах, содержит водород, образующийся при взаимодействии с материалом контейнера, и иногда сернистый ангидрид. При данных восстановительных условиях образуется трифторид плутония. Чтобы получить нужный результат, можно добавить водород отсутствие восстановителя обеспечивается добавлением кислорода. При взаимодействии двуокиси плутония с фтористым водородом в интервале температуры от комнатной до 150° С образуются гидроксифториды типа Pu(OH)2F2 или Pu(OH)Fg. Эти промежуточные соединения нри температуре выше 200° С легко-превращаются либо в PuFg под действием HF-f-Hj, либо в PuF по реакции с HF-f-Og. В качестве исходных материалов вместо двуокиси плутония могут быть использованы различные соединения плутония (П1) и плутония (IV) тетрафторид плутония, нитрат плутония (IV), нитрат плутония (VI) и оксалаты плутония [c.312]

    Согласно современным воззрениям на происхождение нефти, считается доказанным, что первичным процессом является образование протонефти или материнского вещества нефти при анаэробном биохимическом цревращении животных и растительных остатков в смеси с глиной, песком, известковыми отложениями и другими породами. Восстановительная среда, создающаяся при таких условиях, способствует биохимическому превращению, которое, по мнению Стадникова [1], протекает в сторону декарбоксилирования полимеризатов жирных кислот, декарбоксилирования гуминовых кислот, растворенных и диспергированных в смеси ВОСКОВ, смол и неизмененных жирных кислот в виде гомогенной полужидкой массы. Теория Берля [2] возникновения протонефти при щелочном гидролизе целлюлозы под действием щелочей и карбонатов несомненно также указывает направление, по которому может протекать процесс образования нефти. Однако эти теории, освещая первую стадию процесса нефтеобразования, не дают возможности объяснить дальнейшее превращение органического вещества в продукты, составляющие нефть. Предположение Берля [2] о восстановлении протонефти водородом, образующимся при действии воды на закись железа или сернистое железо, не было экспериментально подтверждено. Протонефть Берля, жидка часть которой содержала спирты, кетоны и непредельные соединения, образовывалась при температурах выше 300° при более низких температурах процесс не шел в сторону образования не растворимых в водо продуктов. Целый ряд фактов неопровержимо свидетельствует о том, что нефтеобразование могло протекать при температурах порядка 150—250°. Присутствие в нефти порфиринов, неустойчивых свыше 250°, обнаруженная Трайбсом [3] оптическая активность отдельных нефтяных фракций, исчезающая при высоких температурах вследствие рацемации [4], отсутствие в нефти фенолов, кислот, непредельных соединений [4, 5], кокса или обуглероженных остатков [6], исключающее возможность пирогенетических превращений, заставляют предполагать наличие особых процессов, протекающих в области низких тедшератур. [c.260]


    Можно значительно ускорить процесс полимеризации и снизить температуру реакции, используя окислительно-восстановительные системы, состоящие из инициатора (окислителя) и восстановителя (солей металлов переменной валентности, сернистых соединений, сахара и др.). Восстановитель, действуя на перекись, приводит к распаду ее на радикалы при более низких температурах, чем обычно. Например, реакция между перекисью водорода и ионом двyxвav eнтнoгo железа (сернокислое железо, пирофосфат железа и др.) протекает при меньшей затрате энергии (10,1 ккал1моль) [312], чем термический распад перекисных соединений на свободные радикалы [c.91]


Смотреть страницы где упоминается термин Восстановительное действие сернистого водорода: [c.200]    [c.207]    [c.112]    [c.68]   
Курс аналитической химии Том 1 Качественный анализ (1946) -- [ c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Водород сернистый



© 2024 chem21.info Реклама на сайте