Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидраты солей неорганических кислот определение воды

    Рассматривая неорганические соединения, Берцелиус в основном опирался на химические данные, развивая представления Лавуазье о кислотах, основаниях и солях, и все свои электрохимические рассуждения строил, исходя из этих данных. Это наложило определенный отпечаток на некоторые его электрохимические выводы. Впервые представления о гидратах окислов металлов, как и сам термин гидрат , ввел Пруст, рассматривавший эти вещества как результат непосредственного соединения окислов металлов с водой. В дальнейшем эти представления были распространены на истинные кислоты (в современном смысле). Берцелиус, развивая данные взгляды, приняв во внимание существование солей с кристаллизационной водой (которую они легко отщепляют), выдвинул дуалистическую схему строения этих соединений в духе своей электрохимической теории [24, стр. 184]. Вода в связи [c.168]


    К сожалению, выбор неорганических солей для аналитических целей довольно ограничен по причине их низкой растворимости в органических растворителях. Наибольшее распространение получили соли кобальта и меди. Например, авторы [386] для определения воды в спиртах (этиловом, изопропиловом, аллиловом), ацетоне уксусной кислоте измеряли оптическую плотность на приборе СФ-4 при 640 нм (максимум поглощения сииртового сольвата). Работать вблизи максимума поглощения гидрата (при 520 нм) нецелесообразно, так кяк коэффициент экстинкции гидратированной формы 60 раз ниже соответствующего значения безводной формы. Минимальные концентрации воды, доступные определению этим способом, составляют 0,1% ошибка анализа не превышает 10%. Интересно, что калибровочный график един для всех упомянутых продуктов. Это подтверждает решающую роль воды на изменение спектра поглощения. [c.168]

    В настоящее время известно, что это совпадение, которое убедило многих ученых в правильности теории Аррениуса, было в значительной мере случайным метод определения степени диссоциации по электропроводности неприменим к растворам солей, и эти растворы во всяком случае не подчиняются уравнению состояния идеальных газов. Тем не менее теория электролитической диссоциации с некоторыми видоизменениями является в настоящее время общепризнанной. Считается, что при растворении вещество, способное образовывать проводящий раствор в данном растворителе, самопроизвольно диссоциирует на ионы. Если растворенное вещество представляет собой соль, сильную кислоту или сильное основание, оно диссоциирует во многих случаях почти нацело при условии, что раствор не является слищком концентрированным ещества, сильно диссоциирующие и дающие с водой хорошо проводящие растворы, называются сильными электролитами Слабые кислоты и основания, например амины, фенолы, большинство органических кислот, некоторые неорганические кислоты и основания, в том числе синильная кислота и гидрат окиси аммония, а также некоторые соли, например хлорная и цианистая ртуть, диссоциированы дри обычных концентрациях лишь в незначительной TeneHH.L9TH вещества представляют собой слабые электролиты = С Соли слабых кислот и сильных оснований или слабых [c.36]

    ТОГО, разумеется, для многоатомной кислоты могут существовать эфиры, содержащие несколько различных алкогольных радикалов, а многоатомный алкоголь способен дать сложные эфиры, где входят радикалы нескольких различных кислот,—Притом, кислотные радикалы, в сложных эфирах, могут принадлежать не только органическим, ной неорганическим кислотам.— Сопоставленные с алкоголем или с кислотой, от которых они произошли, сложные эфиры могут быть рассматриваемы или как продукты замещения водного водорода (ср. 206) в алкоголе радикалом кислоты, или как продукты такого же замещения в кислоте радикалом алкогольным. Они являются, с этой точки зрения, аналогами солей и делаются отличным пособием для определения атомности алкоголя или атомности и основности кислоты (ср. 128 и 163). Такое значение сложных эфиров увеличивается еще более от того, что они почти всегда летучи, и это дает возможность, определяя плотность их пара, судить, о величине частицы кроме того, некоторые сложные эфиры интересны еще й потому, что кислоты, которым они принадлежат, не существуют в свободном состоянии (ср. 206). Несмотря на известную аналогию сложных эфиров с солями, необходимо, однако, иметь в виду, что рядом с этой аналогией стоят и резкие различия щелочь и кислота, взятые в эквивалентных количествах, все сполна и немедленно входят в реакцию алкоголь и кислота реагируют постепенно только до известных пределов (см. 128) сильная кислота или сильная щелочь легко вытесняют слабую кислоту или щелочь из соляного соединения, но отнюдь не делают того же легко и быстро с сложными эфирами, а между тем, при достаточной продолжительности прикосновения и достаточно возвышенной температуре, обыкновенно не только щелочи способны разлагать (омылять) сложные эфиры, производя соль кислоты и выделяя алкоголь, но даже одна вода может возрождать из них кислоту и алкоголь, т. е., присоединяясь к ангидриду, давать соответствующие гидраты. Далее, соли, способные к обменному разложению и взятые в эквивалентных количествах, взаимнодействуют немедленно, и реакция оканчивается полным превращением взятых солей в новые, а эфиры если и реагируют подобным образом, то медленно, и реакция, не доходя до конца,останавливается на определенной границе, подобно тому как это бывает при взаимнодействии кислоты и алкоголя. [c.296]



Акваметрия (1952) -- [ c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Вода в гидратах

Гидраты

Гидраты солей

Гидраты солей неорганических кислот

Кислоты неорганические

Кислоты, определение воды

Неорганические кислоты определение воды



© 2025 chem21.info Реклама на сайте