Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия поляризация металла окислите

    Ингибирующее действие замедлителей коррозии связано со способностью некоторых веществ избирательно адсорбироваться на поверхности металла. Скорость коррозии металла в кислоте определяется катодной поляризацией, сопровождающейся выделением водорода. По-видимому, в этом случае роль замедлителя сводится к адсорбции его на поверхности металла. На поверхности металла, но не окалины, образуется ориентационная пленка, которая повышает перенапряжение водорода, увеличивает концентрационную поляризацию и создает высокое переходное сопротивление между раствором и поверхностью металла. Механизм ингибирования кислородсодержащими анионами, хро-матами, фосфатами, силикатами, арсенатами несколько иной. Известно, что поверхность пленки, образующейся на неблагородных металлах при контакте их с водной средой, неоднородна. На поверхности имеются анодные и катодные участки. Действие солевых ингибиторов приписывается адсорбции анионов на анодных участках. Возможно, однако, что ингибирующее действие связано с устойчивостью образующейся с ингибитором кристаллической пленки, являющейся более стабильной, чем гидратированные окислы и гидроокиси. [c.271]


    Научные исследования направлены главным образом на изучение коррозии металлов и развитие теории гальванических элементов. Исследовал (1915—1926) природу электродных процессов. Развил гидратную теорию возникновения электродвижущей силы показал (1924), что электродные процессы зависят от скорости образования и распада сольватных соединений. Развил теорию поляризации при электролизе. Открыл и изучил (1938—1951) реакции черных металлов с парами солей других металлов. Обнаружил (1933—1952) явление пассивности некоторых металлов в неводных электролитах и показал, что пассивирующими пленками могут быть кроме окислов и другие соединения. [c.206]

    В кислых средах уменьшение поляризации катода в основном происходит за счет высокой концентрации водорода (водородной деполяризации). В нейтральных средах наблюдается в основном кислородная деполяризация за счет кислорода, растворенного в среде, а в щелочных средах большое значение в процессе деполяризации приобретают защитные пленки окислов. Но необходимо отметить, что коррозия железа термодинамически возможна в нейтральных средах (например, в воде) и при водородной деполяризации в таких средах, например, при I = 2Ь°С, рН=7 для водородной деполяризации необходимо, чтобы металл имел потенциал более отрицательный, чем (—0,228 в), что вполне возможно [35]. [c.18]

    Сравнение значений стационарных потенциалов железа (потенциалов коррозии) в нейтральных электролитах (—0,3- —0,4 В) со значениями потенциалов образования окислов железа приводит к выводу, что уже при незначительном смещении потенциала железа или стали в положительную сторону от стационарного параллельно процессу ионизации металла на электроде должна протекать реакция окисления, приводящая к возникновению на поверхности окисных слоев. Эта реакция, поскольку она является электрохимической, должна при анодной поляризации, так же как и [c.12]

    Катодная поляризация железного электрода в щелочных растворах по существу не отличается от поляризации других металлов, если не считать ранее отмеченной способности активированной поверхности железа окисляться даже при отрицательных потенциалах. В чистом растворе щелочи, не содержащем ионов железа, на железном катоде может протекать только один процесс — выделение водорода. Если в электролите содержатся ионы железа (или другого металла с более положительным потенциалом осаждения, чем потенциал выделения водорода), то при катодной поляризации на электроде могут одновременно протекать два катодных процесса — выделение водорода и разряд ионов железа (или другого металла) с осаждением его в виде металлической губки. Растворение катодно заряженных поверхностей железа в этих условиях происходить не должно. Однако при длительной эксплуатации электролизеров была обнаружена массовая коррозия в верхней части основного листа электрода с катодной сторо- [c.210]


    Никель, как и железо, способен к пассивации. Его пассивность в отличие от железа более устойчива и может возникать на воздухе, в водных растворах щелочи и при анодной поляризации. Добавка никеля к стали или чугуну обычно оказывает облагораживающее действие а черные металлы, их сплавы с никелем более стойки к коррозии. Пассивность никеля обусловлена образованием стойких окисных пленок, закрывающих поверхность металла и затрудняющих переход его ионов в раствор. В зависимости от способа пассивации строение и состав окисных пленок могут быть различны. Пассивность никеля может вызываться хемосорбцией гидроксильных или кислородных ионов иа поверхности металла, образованием его окислов и гидроокисей или других нерастворимых в данном растворе соединений. Пассивирование никеля при анодной поляризации определяется свойствами анионов электролита и сильно зависит от величины pH раствора чем больше его pH, тем скорее и полнее пассивируется металл . Пассивации способствуют также повышение анодной плотности тока, снижение температуры и наличие в растворе ионов никеля. Противоположное влияние на пассивацию никеля оказывает присутствие в электролите хлор-иона, сульфатов, карбонатов и других кислотных анионов 5 З", а также наличие примесей в металле Агрессивное действие ионов хлора и кислородсодержащих анионов проявляется тем сильнее, чем меньше концентрация щелочи. В растворах карбонатов никелевый анод нестоек. [c.212]

    Окислы и гидраты окислов многих металлов термодинамически более устойчивы, чем системы, построенные из металла, кислорода и воды. Поэтому большинство металлов стремится к образованию устойчивых продуктов, т. е. их соединений с кислородом и водой. Скорость таких процессов обычно невелика она заметно увеличивается, если на металле имеются условия для поглощения и отдачи электронов, т. е. совокупность анодных и катодных процессов. Эти условия выражены тем больше, чем более неоднородна поверхность металла. Обычно - теорию электрохимической-коррозии связывают с представлениями о работе короткозамкнутых местных элементов на поверхности металла (см. 36, 38, 62). Чем больше металл загрязнен примесями других металлов и чем более при прохождении тока, т. е. при поляризации, потенциал этих примесей отличен от потенциала основного металла, тем больше действует короткозамкнутых элементов и с большей э. д. с. По мере растворения основного металла количество примесей на его поверхности и скорость коррозии увеличиваются (см. рис. 171). [c.330]

    При атмосферной коррозии, т. е. в условиях, когда на металлических конструкциях может конденсироваться влага из воздуха, особое значение имеет чистота поверхности металла. Действительно, на пористой грязной поверхности (пыль, ржавчина, окислы, частицы угля и т. п.) водяная пленка задерживается лучше (капиллярная конденсация), и электродная поляризация меньше. Полированные металлы лучше противостоят коррозии. [c.332]

    Анодный процесс, как правило, не имеет большого перенапряжения и сравнительно мало зависит от концентрационной поляризации. Сильное торможение анодного процесса может наступить только при возникновении анодной пассивности, когда, вследствие образования на аноде фазовых или адсорбционных защитных слоев (чаще окислов металла или адсорбированного кислорода), может наступить почти полное затормаживание анодного процесса. Малая скорость коррозии железа и алюминия в концентрированной азотной кислоте или нержавеющей стали в азотной кислоте различных концентраций и в нейтральных аэрированных растворах солей объясняется именно этим видом анодного торможения. [c.103]

    Магний и его сплавы электроотрицательны (анодны) и окисляются (переходят в раствор), находясь в электрическом контакте с другими металлами в электролите. Коррозия магния подчиняется главным образом катодному ограничению, т. е. поляризация постороннего катода, находящегося в контакте [c.147]

    ПЕРЕПАССИВАЦИЯ (транспассивация), усиление коррозии пассивного металла, вызываемое окислителями или анодной поляризацией. Сопровождается образованием растворимых кислородных соед. металла или анодным выделением Ог. Характерна для Сг, Мо, W, Ni и их сплавов. П. начинается при достижении определ. для каждого металла значения электродного потенциала. В условиях П. коррозия обычно равномерная, иногда межкристаллитная (напр., в случае вержавеюш их сталей). П. затрудняет использование мн. металлич. материалов, в т. ч. и нержавеющих сталей, в сильно окислит, средах (горячих концевтриров. р-рах HNOs, р-рах бихроматов, перманганатов и др.). ПЕРЕХОДНОЕ СОСТОЯНИЕ, см. Активированного комплекса теория. [c.431]

    Рассматривая рис. У,1, У,3 и У,4, мы видим, что окислитель, восстанавливаясь, заставляет потенциал металла сдвинуться от равновесного в сторону более положительных значений. ТУГожно сказать, что металл поляризован окислителем, если под поляризацией понимать навязывание электроду потенциала, отличного от равновесного. И не совсем понятно, почему в современной литературе, особенно коррозионной, окислитель часто называют деполяризатором. Так, коррозию в кислотах, когда металл окисляется ионами Н" , навязывающими ему потенциал более положительный, чем равновесный, называют коррозией с водородной деполяризацией , коррозию при окислении металла кислородом — коррозией с кислородной деполяризацией . Мы останавливаемся на этом мелком вопросе потому, что название деполяризатор вместо окислитель искажает химическую природу явления. Окислитель поляризует металл, сообщая ему сверх равновесного потенциала некоторую величину Аф, вызывающую окисление, а не снижает Дф, т. е. не деполяризует металл.  [c.169]


    Согласно представлениям, развитым в работах Б. Н. Кабанова и Е. В. Криволаповой, основным процессом, определяющим скорость анодной коррозии свинца, является окисление металла кислородом, выделяющимся на поверхности РЬОа- Этот кислород, по мнению авторов, частично входит в кристаллическую решетку РЬО в виде сверх-стехиометрических атомов и диффундирует через слой окисла к поверхности металла, окисляя его. Авторами допускается также возможность окисления свинца под слоем РЬОг в результате проникновения электролита между кристаллами или агломератами двуокиси. Рост скорости коррозии при увеличении температуры и времени поляризации, установленный в указанных работах, объясняется влиянием этих факторов на скорость диффузии кислорода. [c.52]

    Следовательно, в результате 1иоследова Ний автору удалось установить, что водород, образующийся при катодной поляризации, проходя через окисные пленки на сплавах циркония или проникая в металл, может вызвать растрескивание этих пленок и ухудшить их защитные свойства. Защитные элементы циркалоя 2 стабилизируют (Окисел от вредного действия водорода, препятствуя его проникновению в окись и в металл. При коррозии циркония, полученного по методу Кролля, в водяном паре водород не только способствует растрескиванию окисла, но также увеличивает скорость роста пленок, по крайней мере, в начальный период реакции. [c.197]

    Вопрос Битвам). Вы совершенно точно показали, что содержание водорода в цирконии -может значительно увеличиваться в процессе коррозии. С другой стороны, известно, что в определенных условиях может происходить образование гидрида, иногда даже в значительных количествах. Ваш вывод, основанный на сравнении сплавов с добавками железа или никеля, о том, что водород, находяш,ийся в металле, не играет роли ускорителя, мне кажется очень важным. В то же время ваши попытки доказать в своих опытах, что пленка окисла повреждается при прохождении водорода, меня несколько удивили, так как для этого процесса необходима диффузия протонов через пленку, чтобы они могли разрядиться на межфазной поверхности металл — окисел. До сих пор предполагали, что водород, образующийся при катодной поляризации, достигает внепхней поверхности окисла (или включений). Короче говоря, можно ли заранее определить, пересекут ли раньше окисную пленку электроны или протоны или это произойдет одновременно  [c.200]

    Ответ. Уже многими учеными было установлено, что водород, находящийся в металле, оказывает очень слабое влияние на коррозию. Нам удалось наблюдать наиболее сильное действие водорода при его проникновении. Очевидно, при прохождении водорода через окисную пленку происходит второй катодный процесс миграция протонов от поверхности к металлу. Момент, когда катодный ток распределяется между этим процессом и процессом прохождения электронов в обратном направлении, пока еще не определен. Как мне кажется, Дралей предположил, что действие железа и никеля в алюминии сводится не только к возникновению образований, но к понижению электронной проводимости окисла, что мешает проникновению водорода, образующегося при катодной поляризации. [c.200]

    В случае наложения извне катодной поляризации можно затруднить растворение металла и таким образом обеспечить более полное растворение только окислов. Растворение металла при травлении, также как и при коррозии (см. 75) и при цементации (см. 38), происходит на анодь ых участках поверхности с освобождением электронов этот процесс сопряжен с процессом потребления электронов на катодных участках в кислых растворах — на восстановление ионов водорода, в нейтральных и щелочных — на восстановление кислорода до ионов гидроксила. Перенапряжение анодных процессов обычно мало, катодных — значительно. Если на систему короткозамкнутых элементов, работающих при растворении металла, извне наложить катодную поляризацию, то потенциалы анодных участков станут немного, а потенциалы катодных участков значительно более отрицательными, разность потенциалов и скорость растворения, выражаемая силой тока, уменьшатся также. При достаточной внешней катодной поляризации можно совсем прекратить растворение металла (см. 36, 38, 62). [c.342]

    Есть и другие причины к проявлению определенной осторожности при использовании катодного восстановления. Так, при катодном восстановлении нержавеющей стали в горячей серной кислоте потенциал металла находится в области быстрого аномального растворения. Если сталь содержит титан, то его карбид накапливается на поверхности электрода [163]. В последующем это способствует самопассивации стали и приводит к увеличению анодного тока в области потенциалов, где карбид окисляется Т1С + ЗНгО = Т10 + 6Н+ + СО2 + 8е. Данные Я. Я. Эзау и Г. С. Парфенова указывают на известную опасность катодного восстановления железа в разбавленной азотной кислоте, содержащей тиомочевину по-видимому, при катодной поляризации этот ингибитор (или продукты его превращения) усиленно адсорбируется на электроде, что значительно снижает скорость коррозии. Вообще, чем сложнее состав сплава или раствора, тем с большей осмотрительностью нужно решать вопрос о катодном восстановлении и его методике. [c.125]

    Окисление металла кислородом, диффундирующим через пленку РЬОа, несомненно имеет место, особенно при высоких положительных потенциалах. Однако представление о лимитирующей роли этого процесса не вполне согласуется с некоторыми экспериментальными фактами. К таким фактам относится, в частности, линейная зависимость скорости коррозии от времени (скорость нестационарной диффузии пропорциональна корню квадратному из времени), а также уменьшение коррозии с ростом плотности тока. Кроме того, как показывают данные анализа образцов РЬОд, полученных при анодном окислении свинцового электрода, состав окисла характеризуется стехио-метрическнм недостатком кислорода. Наконец, рентгенографическим путем не удается обнаружить нарушения кристаллической структуры РЬОг при анодной поляризации свинца. [c.53]

    В тех случаях, когда при коррозии на поверхности металла образуется окисный (или солевой) слой в виде сплошного, изолирующего ее от раствора чехла, дальнейшее анодное окисление металла непременно будет включать стадию доставки участников реакции через этот слой. Поскольку перенос вещества через твердую фазу в обычных условиях процесс довольно медленный [1], можно предполагать, что стадия переноса через слой окисла, по крайней мере в некоторых случаях, окажется наиболее медленной стадией, определяющей скорость процесса окисления металла в целом. Экспериментальное выявление концентрационной поляризации в твердой фазе представляет, однако, известную трудность. Прямые методы обнаружения концентрационной поляризации, применяющиеся при исследовании реакций с переносом реагентов в растворе (по влиянию конвекции или по изменению концентрации реагентов), в данном случае непригодны. Из косвенных, релаксационн ых методов исследования высокочастотные методы имеют ограниченную применимость. Они не могут обнаружить концентрационную поляризацию тогда, когда для ее проявления требуется время, более длительное, чем длительность единичного импульса, которая у этих методов очень мала. При импедансном методе, например, она не превышает нескольких миллисекунд, так как нижний предел рабочих частот у этого метода не ниже 200 гц. Следовательно, в случаЖс, когда для проявления концентрационной поляризации необходимо, например, несколько секунд или минут, этот метод обнаружить ее не сможет. Такие случаи, оказалось, не так уже редки на практике, и применение к ним высокочастотных методов может привести к ошибочным выводам относительно природы скорость определяющей стадии процесса [2]. Вероятность возникновения такого случая увеличивается, как увидим ниже, при замедлении электрохимической стадии процесса, т. е. при его истинной пассивации . Поскольку именно пассивные металлы представляют для нас наибольший интерес, требовалось изыскать метод, который был бы в принципе свободен от указанного ограничения. В поисках его мы обратили внимание на метод потенциостатической хроноамперометрии, предложенный и апробированный на реакциях, протекающих с пе- [c.80]

    Применение метода импульсной поляризации для изучения электрохимического поведения окислов и окисленной поверхности металла. Дерягина О. Г., Палеолог Е. Н. Сб. Новые методы исследования коррозии металлов , М., изд-во Наука , 1973, 46 —51. [c.215]

    Поэтому при этих условиях величина коррозионного тока, как это следует из рис. 2, соответствует или близка теоретически рассчитанным значениям ее. Анодная реакция ионизации адсорбированного водорода (4) при поляризации титана переменным током в кислых растворах, по-видимому, имеет гораздо меньшее значение, чем при коррозии железа в этих же условиях. Последнее объясняется, очевидно, тем, что более легко образующаяся в анодный полупериод тока на поверхности титана адсорбционная или окисная пленка препятствует адсорбции водорода в катодный полупериод. Это объяснение подтверждается данными работы [7], в которой непосредственно было установлено, что наличие окислов на поверхности титана сильно затрудняет адсорбцию на нем водорода и последующее наводоражива-ние металла. Аналогичное явление отмечено также в работе [8], в которой показано, что присутствие на поверхности электрода адсорбированного или прочно связанного кислорода значительно уменьшает адсорбцию водорода при катодной поляризации платины в 1 Ж растворе НаЗО . [c.88]

    Наряду с электрохимической поляризацией пассивность металлов оказывает благоприятное влияние на уменьшение коррозионного разрушения металла. В отличие от поляризации пассивность может возникать и при отсутствии тока. Пассивность определяет коррозионную стойкость многих металлов и сплавов в естественных условиях. Так, алюминий на воздухе покрывается тонким слоем окиси, защищающей металл от коррозии. Железо, вследствие образования на его поверхности тонкого слоя окисла, весьма устойчиво в концентрированной азотной кислоте. При наличии в воде небольшого количества углекислоты на поверхности свшща образуется весьма устойчивая пленка углекислого свинца. [c.15]

    Основной потенциалоопределяющей реакцией при катодной поляризации арматуры токами малой плотности является восстановление молекулярного кислорода. Сталь, покрытая пассивирующим слоем или продуктами коррозии, является весьма эффективным катодом. В литературе [34] отмечается, что скорость ионизации кислорода зависит от состояния поверхности металла. Указывается также, что ток ионизации кислорода на окисленном металле значительно меньше, чем на электроде, поверхность которого свободна от окислов. Однако в условиях катодной поляризации арматуры в бетоне из-за весьма затруднительной доставки кислорода скорость иониза [c.83]

    В наших исследованиях было высказана [36] п обосновано [12, 37] предположение, что в пассивирующих условиях нержавеющая сталь, содержащая примесь платины или палладия, т е наиболее активных катодов, пассивируется более легко и более устойчиво, чем та же сталь, не содержащая благородных присадок. Аналогичное влияние оказывает и добавление солей этих металлов в раствор. В последнем случае образование добавочных микро катодов на поверхности стали происходит вследствие электрохимического вытеснения более благородых ионов из раствора менее благородными ионами растворяющегося металла. Возникающая пассивность объясняется усилением анодной поляризации активных (анодных) участков корродирующей поверхности за счет контакта с добавочным катодным включением. Если на инертных катодных включениях может установиться достаточно положительный потенциал, характеризующий окислительно-восстановительный потенциал среды, и если поверхность катодов достаточно велика (нет большой поляризуемости катодов), то в условиях отсутствия активных анионов в растворе потенциал анодных участков будет смещаться в положительную сторону. Если при облагораживании потенциала анода будет достигаться потенциал процесса анодного образования фазового или адсорбционного окисла, то за счет этого будет достигнуто пассивирование анодов и, следовательно, общее прекращение коррозии, как это разбиралось выше. [c.313]


Смотреть страницы где упоминается термин Коррозия поляризация металла окислите: [c.431]    [c.85]    [c.622]    [c.636]    [c.450]    [c.212]    [c.209]    [c.71]    [c.224]   
Теоретические основы коррозии металлов (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии



© 2025 chem21.info Реклама на сайте