Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частица величина

    Сам Плюккер и независимо от него Крукс показали, что такое отклонение существует. Оставалось решить еще один вопрос. Если катодные лучи представляют собой заряженные частицы, то электрическое поле также должно их отклонять. Однако доказать, что катодные лучи отклоняются в электрическом поле, удалось далеко не сразу. Только в 1897 г. английский физик Джозеф Джон Томсон (1850—1940), работая с трубками с очень глубоким вакуумом, сумел в конце концов показать, что катодные лучи отклоняются под действием электрического поля (рис. 20). Это было последним звеном в цепи доказательств, и теперь оставалось лишь согласиться с тем фактом, что катодные лучи представляют собой поток отрицательно заряженных частиц. Величина отклонения частицы в магнитном поле заданной напряженности определяется массой частицы и величиной ее электрического заряда. Томсону удалось измерить соотношение массы и заряда частицы, хотя измерить эти величины отдельно он не смог. [c.148]


    Удельная поверхность в данном случае понимается как отношение поверхности частицы к ее объему. Этот фактор также о-т-личается неопределенностью. Так, куб с ребром а и сфера с диаметром а имеют одинаковую удельную поверхность 6/а, хотя при наиболее плотной укладке пористость осадка из кубических частиц равна нулю и такая укладка не имеет свободной поверхности, а пористость осадка из сфер составляет 0,26 и такая укладка имеет полную свободную поверхность (сферы соприкасаются в точках). Значение удельной поверхности как суммы удельных поверхностей индивидуальных частиц отличается от соответствующего значения для осадка как системы индивидуальных частиц. Это объясняется наличием в осадке соприкасающихся поверхностей отдельных частиц. Величина удельной поверхности заметно различается при ее определении разными способами в опытах с одним и тем же осадком. [c.74]

    Пары масел и жидкостей на нефтяной основе так же ядовиты,, как пары бензина или керосина. Однако отравление парами масел и жидкостей — явление чрезвычайно редкое. Значительную опасность для организма представляют масляные туманы. Вдыхание масляного тумана со взвешенными частицами величиной от 1 до 100 л /с вызывает отравление. Опасность отравления парами или туманом масел сильно увеличивается, если в масле содержатся сернистые соединения. [c.233]

    Для макрочастиц (тяжелых частиц) величина отношения him очень мала, поэтому для них справедливы законы классической ме-хани <и, в рамках которых скорость и положение частицы могут быть точно определены одновременно. [c.11]

    Теперь в правые части формул (1.89), (1.90) кроме физико-хими-ческих констант входят отдельно диаметр и скорость частицы. Величины (Ке С) / и (Ке/О с точностью до постоянного множителя, определяемого значениями коэффициентов при с ии в формулах (1.89), (1.90), пропорциональны диаметру и скорости частицы. Откладывая их по осям координат, получим возможность по известному диаметру определить установившуюся скорость частицы, и наоборот. [c.23]

    Исследования, выполненные сотрудниками Московского энергетического института Н. Г. Дроздовым и С. П. Носовым, показали, что возможность образования зарядов статического электричества в жидком кислороде обусловливается наличием в нем твердых частиц. Величина напряженности электростатического поля зависит от скорости движения частиц в жидком кислороде, количества примесей и их природы. Знак электрических зарядов, по данным этой работы, зависит от природы примесей. Наличие в жидком кислороде частиц активного глинозема и двуокиси углерода приводит к электризации жидкого кислорода с отрицательным знаком, тогда как наличие частиц силикагеля приводит к электризации с положительным знаком. Изучение процесса электризации потока жидкого кислорода при его дросселировании показало, что напряженность электрического поля имеет тенденцию к быстрому возрастанию при увеличении скорости жидкого кислорода. [c.28]


    Как видно из выражения (3.46), диффузионный поток зависит от коэффициентов молекулярной диффузии мономера в водной фазе и частице О ) от размеров капель и частиц, меняющихся в ходе полимеризации (Л , Е,), а также от параметра IV, в который входят константа скорости роста цепи к , концентрация радикалов Сак- и коэффициент молекулярной диффузии в частице. Величину У можно рассматривать как параметр, характеризующий соотношение между скоростью химической реакции и скоростью диффузии молекул мономера в частице. [c.151]

    Парамагнитным частицам присущ также и диамагнетизм, но для них он имеет подчиненное значение. Измерение парамагнитной восприимчивости газов позволяет определить магнитный момент частицы. Квантовая механика дает для собственного магнитного момента частицы величину (в магнетонах Бора) [c.43]

    Левая часть этого равенства определяется характером движения диффундирующей частицы. Для случая молекулярной диффузии ее можно вычислить на основе усреднения уравнения движения частицы под действием случайной силы Р. Считая, что коэффициент сопротивления к при движении частицы величина постоянная, получим [c.186]

    При достижении предела растворимости кислородсодержащих соединений в масле (образование второй фазы в виде эмульсии или коллоида с очень малым размером частиц) величина 6 его резко возрастает (рис. 10. И) [5]. [c.541]

    Из рис. 27 видно, что даже самые молодые крупные частицы уменьшили свою поверхность на 100—200 м /г. При дальнейшем уменьшении размеров частиц величина поверхности изменяется меньше. По-видимому, в промышленных условиях спекание идет чрезвычайно интенсивно лишь сразу после загрузки свежего катализатора затем скорость спекания резко замедляется. [c.63]

    Для несферических частиц величина коэффициента присоединенной массы может эначительно отличаться от 0,5. Расчеты, проведенные в работе [48], показывают, что для эллипсоидального пузыря с отношением малой и большой полуосей эллипса х =0,4 значение коэффициента присоединенной массы в три раза превышает значение этого коэффициента для сферической частицы, а при х = 0.1 - в двенадцать раз. Таким образом, общепринятая идеализация формы газовых пузырьков сферами при нестационарном движении может приводить к значительным погрешностям. Эксперименты, проведенные в работе [49], в которых с помощью лазерного доплеровского анемометра проводились измерения скорости пузырей на начальном участке их движения, показывают, что зависимость скорости движения пузыря от высоты подъема резко отличается от такой же зависимости для сферической твердой частицы. На первом участке, составляющем примерно lOi/g. скорость пузыря резко возрастает, достигая значения, в полтора раза превышающего значение установившейся скорости. На втором участке скорость начинает падать, приближаясь к установившемуся значению. В зависимости от диаметра пузыря протяженность второго участка составляет 50 — 1(Ю диаметров. По-видимому, некоторое время после отрыва пузырь имеет еще сферическую форму. [c.31]

    Электризация производится при напряжении до 30—50 кВ. Величина напряжения и полярность (знак заряда электризующих электродов) зависят от физических свойств пыли, ее концентрации, размеров частиц, величины и знака естественного заряда пыли, возникающего при ее образовании в технологическом процессе. [c.188]

    Процесс укрупнения коллоидных частиц в результате их слипания, приводящий в конечном итоге к выпадению вещества в осадок или к образованию студней, называется коагуляцией. Коагуляцию можно вызвать повышением температуры, добавлением электролитов, прибавлением к золю другого золя с противоположным по знаку зарядом частиц (взаимная коагуляция). Для начала явной (т. е. различимой глазом) коагуляции необходимо прибавить к золю некоторое минимальное количество электролита с, называемое порогом коагуляции. При концентрациях электролита, меньших порога, коагуляция протекает в скрытом состоянии. Коагуляцию вызывают те из ионов прибавляемого электролита, заряд которых противоположен по знаку заряду коллоидных частиц. Величина, обратная порогу коагуляции, называется коагулирующей способностью иона Р  [c.167]

    Питание остроконечных электродов производили выпрямленным током положительной (для хлорида аммония — отрицательной) полярности, напряжением до 50 кВ. Определено влияние полярности коронирующего электрода и величины напряжения. Знак заряда электризующих электродов и величина напряжения зависят от физических свойств пыли, ее концентрации, размеров частиц, величины и знака естественного заряда пыли, возникающего при ее образовании в технологическом процессе. [c.194]

    По ОПЫТНЫМ данным для шарообразных твердых частиц величина Ф(е) при е > 0,7 определяется по уравнению [c.246]

    При условии замкнутости система может переходить из одного состояния в другое только посредством упругих столкновений частиц. Поскольку мы не рассматриваем конфигурационное пространство, временное поведение системы не является детерминированным, последовательность переходов системы из одного состояния в другое — случайный процесс, а сами эти состояния образуют марковскую цепь. Вероятности переходов между различными состояниями не зависят от времени и полностью определяются набором скоростей всех частиц. Чтобы получить возможность описания макроскопических систем, нужно было бы положить N равным примерно числу Авогадро. Ввиду ограниченных возможностей современных ЭВМ воспользуемся несколько модифицированным методом периодических граничных условий. При описании системы набором скоростей всех частиц он сводится к разбиению бесконечной системы частиц на Л/групп таким образом, что скорости всех частиц в каждой группе близки по величине и направлению друг к другу. В каждой группе выделяется "типичная" частица и считается, что остальные частицы в группе ведут себя аналогично этой частице. Таким образом, если п — физическая концентрация частиц, величина л/Л/будет соответствовать концентрации каждой из N "типичных" частиц. Отметим, что частицы системы могут быть разного сорта — а, (3.....Т, но при [c.202]


    Изменение анергии груза в основном расходуется на деформацию разрушаемой частицы. Величина этого изменения [c.246]

    Для сферической частицы величина А равна при этом [c.200]

    Полученные простые интерполяционные зависимости (1.22)— (1.22") позволяют предсказать зависимость критической скорости кр и соответствующего весового расхода газового потока = = Р кр от давления и температуры [1 2 гл. II ]. При правильном учете коэффициента формы ф и среднего поверхностного диаметра а их можно рекомендовать для инженерного расчета с точностью =ь30%. Чем более неправильную форму имеют частицы и чем ниже Ф, тем выше обычно начальная порозность неподвижного слоя Поскольку в выражение для сопротивления мелких частиц величины ф и Ёо входят совместно в виде произведения ф бо/(1 — Вд), то их изменения частично взаимно компенсируются [И], что позволяет без большой погрешности распространить более простое соотношение (1.21) на эти системы, рассчитывая Ке и Аг по эквивалентному диаметру. [c.25]

    На рис. .60 и .61 дана частотная зависимость х, е и г" и их графики в комплексной плоскости для полистиролового латекса как типичного примера, а числовые значения произведены в табл. У.8. Результаты по другим системам были аналогичными данным исследования полистиролового латекса, за исключением некоторых колебаний величины дисперсии и характеристической частоты. График комплексной диэлектрической проницаемости в комплексной плоскости удовлетворительно выражается правилом круговой дуги, которое определяется уравнением ( .370). Характеристическая частота /о = 72 То оказалась обратно пропорциональной квадрату диаметра частиц. Величина дисперсии, т. е. e — 6/,, находится в линейной зависимости как от объемной доли суспендированных частиц, так и от их диаметров. [c.397]

    Если предположить, что твердая частица растворяется, как единица в целом, то вопрос размера также приобретает немаловажное значение. Так, нанример, размер двух слоев (взятых за единицу) олеата в мицелле олеата натрия определен пр и помощи рентгеновских лучей в 49 ангстремов (4,9 миллимикрона). Если-растворить 1 г соли олеиновой кислоты в 0,791 г бензола, то интервал рентгеновских лучей увеличится до 86 ангстремов (8,6 миллимикронов). Небесполезно сопоставить эти цифры с размерами самых мелких видов углерода, которые имеются в продаже. Примером может служить марка супер-спектра , выпускаемая фирмой Колумбия , средний размер частиц которой равен 130 ангстремам (13 миллимикронам). Трудно объяснить себе процесс размещения в мицелле такой сравнительно громоздкой частицы иначе, как ее адсорбцией поверхностью мицеллы. Если попытаться представить себе растворение частицы, величина которой выходит за пределы мицеллы, то можно легко заблудиться в чаще всевозможных определений. [c.110]

    В ситуациях с переменным числом частиц величины и, И, А и С будут зависеть не только от своих стандартных переменных, но и от количеств (чисел молей) отдельных веществ (л,)  [c.31]

    Причиной этого является диссоциация или ассоциация третьего компонента в одном из слоев. При достаточно полной диссоциации молекул третьего компонента на две или три частицы величина т близка к 2 или 3. При ассоциации двух или трех молекул — к /2 или /з- Это объясняется тем, что в формуле закона распределения стоят аналитические концентрации растворенного вещества, а фактические его концентрации при диссоциации или ассоциации изменяются. [c.169]

    Определение размера частиц величиной от 0,2—0,3 до 1 — [c.101]

    Для определения скорости перемещения коллоидных частиц (величины сдвига в положении частицы за единицу времени) используют объектив, на который нанесена координатная сетка или оси координат с делениями. При заданном увеличении микроскопа на его столик помещают объект-микрометр — стеклянную пластинку с выгравированными делениями точно определенной величины. Сопоставляют размеры делений на координатных осях или координатной сетке объектива при заданном увеличении с делениями объект-микрометра. Затем вместо объект-микрометра помещают кювету с коллоидным раствором и наблюдают за перемещением частиц, которые проявляют себя в виде светящихся точек. Наличие в объективе координатной сетки и предварительная количественная оценка каждого ее элемента позволяют определить величину сдвига частички. Определение величины сдвига облегчается при использовании микрокиносъемки. [c.394]

    Другие факторы, влияющие па величину коэффициента внутренней диффузии. Изменение вычнсленчых значений коэффициента внутренней диффузии примерно на 10% для систем, приведенных в табл. 2, обусловлено такн е влиянием ошибок при вычислении распределения по размерам частиц величиной от 28 до 80 меш. Последнее усложнение можно преодолеть, находя соответствующую среднюю величину диаметра частицы, применимую для каждого из возможных способов приближения к равновесию. Для этой цели строят график зависимости общего весового процента силикагеля от диаметра частиц. Для адсорбента принимается произвольное постоянное значение коэффициента внутренней диффузии. Пользуясь выбранным интервалом времени в, определяют для различных диаметров частиц степень приближения к адсорбционному равновесию и строят график зависимости этой величины от общего весового процента силикагеля. Затем производят интегрирование по этому графику и для выбранного интервала времени определяют средниюю величину Е степени приближения к равновесию. Потом находят тот средний диаметр частиц Ор, которому соответствует эта величина. Для различных распределений частиц по размерам следует повторить всю эту процедуру с целью получения различных средних величин диаметра частицы. [c.152]

    Используют в качестве компонента, улучшающего антифрикционные и про-тивоизносные свойства. Применяют в виде порошка высокой чистоты и высокой степени помола. Частицы величиной 1—7 мк. Коэффициент трения скольжения составляет 0,05— [c.203]

    Растворитель отгоняют чаще всего под вакуумом. Концентрирование дисперсий можно проводить всеми известными методами упариванием под вакуумом, сливкоотделением с использованием сливкообразующпх агентов или центрифугированием, причем и в этом случае используют сливкоотделяющие агенты, например альгинат натрия. Вместо альгината натрия для сливкоотделения можно применять калиевое канифольное мыло [71] при введении его в латекс в количестве 2% содержание полимера в серуме понижается до 0,9%, а в образовавшихся сливках составляет 55%. Серум можно вновь использовать для приготовления водной фазы. Обычно действие мыл в качестве агентов сливкоотделения менее эффективно, чем Действие полиэлектролитов. Мыла пригодны для осветления серума, содержащего частицы величиной не менее 200 нм. [c.602]

    Если удельное сопротивление осадка желательно отнести не к единице его толщины, а к единице массы его твердых частиц, находящихся на 1 поверхности фильтрования, то в уравнении (11,24) достаточно заменить произведение ГоХо на произведение Способы проведения опытов и обработки опытных данных при определении постоянных фильтрования в этом случае не изменяются, за исключением того, что вместо высоты слоя осадка устанавливают массу его твердых частиц. Величину Хм определяют, как описано ниже (с. 148). [c.127]

    Двусернистый молибден МоЗа (природный) широко используется в смазках в качестве компонента, улучшающего антифрикционные и противоизносные свойства. Может применяться в условиях работы смазки при повышенной влажности и высоком вакууме. Не окисляется на воздухе при температурах до 400 С и под действием ядерного излучения. Применяется в виде порошка высокой чистоты и высокой степени помола, не должен содержать более 2% примесей с абразивными частицами. Природный молибденит подвергается измельчению в вибромельницах или струйных мельницах, а также гомогенизаторах и аппаратах с применением ультразвука. В последнем случае получаются частицы величиной 1—7 мк. После измельчения в других аппаратах получаются более крупные частицы (40—100 мк). Коэффициент трения скольжения МоЗо составляет 0,05—0,10, т. е. в два раза меньше, чем у графита. [c.690]

    Для мелких частиц величиной Аг можно пренебречь и в этом случае и ахИОО/1878 для крупных частиц величина Аг значительна и 5,22/0,61 8,6. [c.364]

    Если при прохождении через реакционный сосуд поглощается незначительная доля падающего света, то можно считать, что в каждой единице объема поглощается одно и то же количество квантов света. Если / — число квантов света, проходящих через сечение 1 jn за секунду, то в слое, расположенном перпендикулярно направлению светового потока и имеющем сечение 1 см и толщину dl, поглотится по закону Ламберта—Бера di = [khdl квантов света, т. е. в единице объема поглотится У [А 1 s квантов и образуется / [А ] S возбужденных частиц. Величина е представляет собой молярный коэффициент поглощения или коэффициент экстинкции. Если обозначить через константу скорости флуоресценции или фосфоресценции, —константу скорости конверсии энергии электронного возбуждения в энергию теплоЕЮГо движения и kp— константу скорости химического превращения возбужденных частиц, то для скорости накопления возбужденных частиц А получится выражение  [c.240]

    При наличии гидратной оболочки, окружающей частицы, величина ф, рассчитанная по уравнению Эйнштейна из экспериментально найденных значений вязкости, представляет собой эффективную объемную долю дисперсной фазы, так как включает в себя объем гидратно связанной жидкости. Этот объем можно найти как разность объемов гидратированной (Vil) и негидратированной (V) мицелл. Величины Vh и V могут быть рассчитаны соответственно по величине характеристической вязкости [г]] и парциального удельного объема ПАВ в растворе. Действительно, из уравнения (126) следует  [c.164]

    В литературе приводится много более детальных по сравнению со схемами (8.2) и (8.4) схем электроокнсления органических веществ. Однако количественный анализ таких схем [например, (8.3) и (8.5)] в настоящее время невозможен ввиду недостаточной информации о типах частиц, присутствующих на поверхности, о константах скоростей отдельных стадий и т. д. В ряде работ показана принципиальная возможность анализа кинетических закономерностей электроокисления простых кислородсодержащих органических веществ введением в кинетические соотношения наряду с общими заполнениями поверхности хемосорбированными частицами величин заполнений активными частицами. [c.275]


Смотреть страницы где упоминается термин Частица величина: [c.77]    [c.125]    [c.216]    [c.42]    [c.463]    [c.193]    [c.399]    [c.293]    [c.191]    [c.63]    [c.294]    [c.237]    [c.58]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.21 , c.57 , c.58 , c.61 , c.196 , c.207 , c.226 , c.241 , c.248 , c.259 , c.272 ]




ПОИСК







© 2025 chem21.info Реклама на сайте