Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистон в хроматине

    Во-вторых, со сложными структурны.ми перестройками хроматина связана репликация ДНК. Как будет обсуждаться ниже, в момент прохождения репликационной ви.- ки ДНК сбрасывает гистоны и почти сразу после этого нуклеосо.мы реконструируются на ДНК- Следовательно, должны существовать механиз.мы, которые обеспечивают транспорт новосингзированных гистонов из цитоплазмы в ядро и сборку нуклеосом на ДНК- [c.234]

    АМИНОКИСЛОТНЫЙ СОСТАВ ГИСТОНА ХРОМАТИНА У РАСТЕНИЙ РАЗЛИЧНЫХ ВИДОВ [c.35]


    Кроме гистонов в хроматине присутствует большое количество различных негистоновых белков, характер взаимодействия которых с нуклеосомной ДНК пока не ясен. Наиболее богато представлены негистоновые белки HMG 14 и 17, функция которых остается все еще не изученной. H.MG 14 и 17 —это близкие по структуре белки, несущие большое количество заряженных групп. Они состоят соответственно из 68 и 74 аминокислотных остатков. Две молекулы этих белков способны к кооперативному связыванию с нуклеосомой, причем каждый белок взаимодействует с концевым участком ДНК и вторым сегментом, расположенным на расстоянии примерно 20 п. о. от ее конца. Эти две области нуклеосомной ДНК в основном свободны от гистонов (см. рис. 125). HMG 14 и 17 связываются с обращенной внутрь нуклеосо.мы стороной двойной спирали ДНК и не меняют существенным образом общую форму нуклеосомы. Создается впечатление, что этн два белка занимают свободную внутреннюю область ДН К нуклеосомы. [c.242]

    Гистон Н1 существенно отличается от других гистонов. Он не входит в состав минимальных нуклеосом (см. раздел 4 этой главы) и участвует в организации 30-нм фибриллы хроматина. Его молекулярная масса превышает 20 ООО. Положительно заряженные аминокислотные остатки Н1, главным образом лизины, находятся в основном в С-конце молекулы и в меньшей степени в Ы-концевой части. Центральная область N-кoнцeвoй половины молекулы богата гидрофобными остатками и образует глобулу. Н1 обладает выраженной доменной структурой, мягкое расщепление трипсином легко делит его на глобулу и хвост . Помимо лизинов хвост богат остатками пролина и глицина и имеет неупорядоченную конформацию. [c.235]

    Как известно, в дрожжах не наблюдается типичная картина митоза и нет метафазных хромосом (возможно, потому что у них очень маленькие хро.мосомы). По-видимому, с этим связано отсутствие гистона Н1 в дрожжах, несмотря на типичную нуклеосомную структуру хроматина. [c.248]

    В присутствии гистона Н1 и ионов Са + 10-им фибрилла образует следующий уровень организации хроматина — фибриллу тол-<7 t г [c.244]

    Помимо гистонов, хроматин содержит большое количество так называемых негистоновых белков, т. е. белков, не являющихся гистонами. Сюда относятся разные ферменты, участвующие в репликации, транскрипции и других [c.84]

    Домены эукариотической хромосомы отличаются от прокариотических доменов. Представление о доменах прокариотической хромосомы сформулировано на основании опытов по релаксации ДНК. Представление об эукариотических доменах опирается на опыты по электронной микроскопии митотических хромосом, с которых удалены гистоны. ДНК эукариот, точнее нуклеосомная фибрилла, находится в релаксированном состоянии. Обработка релаксирующим ферментом не изменяет ее конформации. Следует учитывать, что ДНК навивается на нуклеосомы спиралью. Если те.м или иным способом удалить гистоны с ДНК, то в ней возникают супервитки. Особенно нагляден этот эффект при использовании в качестве модели хроматина кольцевой мини-хромосомы вируса ОВ-40 длиной около 5 т. п. о. Как видно из рис. 127, мини-хромосома на электронных микрофотографиях представляет собой релаксированную структуру. После удаления гистонов ее ДНК суперспирализована. Существует предположение, что тран-скрипционно активные петли эукариотической хромосомы все-таки находятся в торзионно-напряженном состоянии и релакси-руют под действием топоизомераз. [c.246]


    Белки HMG могут участвовать в организации активного хроматина [160—166]. Помимо гистонов, хроматин содержит множество негистоновых белков, функция которых не известна. Среди них, очевидно, должны быть структурные белки, ферменты, обеспечивающие протекание процессов репликации, транскрипции и др., и регуляторные белки. Э. Джонс (Великобритания) попытался выделить белковые компоненты, присутствующие в достаточно большом количестве, что позволило бы провести их анализ и идентификацию. Ему действительно удалось изолировать новый класс ядерных белков, названный им группой белков с высокой подвижностью (high mobility group), или HMG-белки. Название зависело от высокой подвижности этих белков при электрофорезе в геле. Фракция HMG-белков распадается на ряд индивидуальных компо- [c.156]

    Активация хроматина сопровождается также локальным аце-тилированием N-кoнцeвыx областей гистонов Н2А, Н2В, НЗ и Н4. Вероятно, активный и неактивный хроматин различаются и по содержанию гистоновых вариантов. Например, в полностью репрессированном хроматине эритроцитов цыпленка гистон Н1 частично заменен близким ему по структуре гистоном Н5. [c.254]

    Синтез гистонов в клетке строго скоординирован с синтезом ДНК если синтез ДНК подавляется, синтез гистонов падает примерно на 90%. Остается так называемый базальный уровень синтеза. Возможно, он необходим для восстановления структуры хроматина на репарированной ДНК, для замены деградированных гистонов или дпя синтеза определенных субфракций. Среди молекул мРНК, кодирующих гистоны, лишь часть несет на З -конце Поли (А). Возможно, полиаденилирование влияет на время жизни Гистоновых матриц и соответственно на уровень и избирательность базального синтеза. [c.237]

    Разработана остроумная генетическая система, позволяющая заменять в клетках дрожжей нормальные гены на их модифицированные аналоги с помощью генно-инженерных манипуляций. В результате в клетке синтезируются измененные белки. Таким образом было показано, что гистоны Н2А и Н2В дрожжей можно лишить 10—30 концевых аминокислот и что это не влияет на сборку нуклеосом и структуру хроматина и вообще на жизнеспособность клеток. Это особенно странно, если учесть высокую консервативность аминокислотных последовательностей гистонов. Возможно, Ы-концевые участки нуклеосомных гистонов необходимы не для сборки нуклеосом, а для другой цели, например для транспорта гнстонов из цитоплазмы в ядро. [c.241]

    Нуклеосома обладает достаточно высокой стабильностью при различных условиях, однако в ряде случаев были обнаружены сравнительно небольшие конформационные изменения в них. Так, различия в условиях кристаллизации сказываются на взаимодействии одного из гистонов (предположительно Н2А) с концевым участком нуклеосомной ДНК. Карта линейной последовательности гистонов на нуклеосомной ДНК также изменяется в деталях в зависимости от того, проводят ли иришивку в ядрах, хроматине (Ю-нм фибриллах) или выделенных нуклеосомах. [c.242]

    При обработке нуклеазами хроматин быстро расщепляется на фрагменты, состоящие из 205 15 пар оснований, и более медленно — на фрагменты, состоящие из 170 пар оснований. Этот результат в сочетании с приведенными выше данными позволил предположить существование структуры, в которой фрагмент ДНК, состоящий из 200 пар оснований, обмотан вокруг гистонового октамера таким образом, что двухцепочечная нить ДНК длиной 68 нм упаковывается в одной "у-ча-стице размером порядка 10 нм. Соседние у-частицы связаны друг с другом очень короткими участками ДНК. Было высказано предположение, что обычная двойная спираль ДНК, поворачиваясь вокруг гистонов в у-частице, может претерпевать резкие изломы через каждые 20 пар-оснований [297], причем при каждом таком изломе спираль будет раскручиваться на 15—20°. Гистон Н1, присутствующий в меньшем количестве, чем другие гистоны, может играть роль агента, способствующего образованию поперечных связей в хроматине (рис. 15-35). Согласно другим данным [296а], на каждую у-частицу приходится один отрицательный виток суперс пирали. Если это так, то число у-частиц на рис  [c.302]

    Обработка микрококковой нуклеазой не единственный способ выявить в хроматине регулярное чередование защищенных участков (нуклеосом) и открытых участков (линкеров). Такая структура подтверждается и с помощью некоторых химических проб, которые модифицируют или расщепляют ДНК- Эти соединения расщепляют ДНК там, где она не связана с белками. Гистоны в составе нуклеосомы защищают ДНК, поэтому при ограниченном расщеплении получается характерная иуклеосомная лесенка. [c.244]

    Помимо гистона Н1 в организации соленоидной структуры хроматина участвуют, очевидно, и нуклеосомные гистоны. Положительно заряженные Ы-концевые области этих гистонов, как упоминалось ранее, несущественны для образования нуклеосомной структуры, но вовлечены в организацию соленоидной структуры Хроматина. Удаление этих участков с помощью мягкого расщепления гистонов трипсином в составе хроматина приводит к необратимому разворачиванию соленоида. [c.245]

    L-Л.-необходимый компонент пищи для человека и животных (незаменимая аминокислота). Встречается во всех организмах в составе молекул белков и пептидов, входит в состав активных центров ферментов, напр, аминотранс-фераз в больших кол-вах содержится в гистонах и протаминах (белки, входящие в состав хроматина). Его содержание в продуктах (на сухую массу) составляет в пшеничной муке 1,9%, говядине 10%, коровьем молоке 8,7%. [c.592]


    Важный вопрос организации хроматина касается судьбы нуклеосом при транскрипции. Электронная микроскопия интенсивно транскрибирующихся участков хроматина, например рибосомных генов, ясно показывает, что нуклеосом на них нет даже в тех случаях, когда между молекулами РНК-полимеразы, движущимися одна за другой по гену, виден промежуток. Необходимо отметить, Что регуляция активности рибосомных генов осуществляется в клетке путем изменения числа работающих генсв, но не интенсивности транскрипции. Однако промоторы рнбосомных генов всегда находятся в активной конформации (свободны от гистонов). [c.254]

    Однако полное удаление гистонов имеет место лишь в немногих случаях при максимальной интенсивности транскрипции. Как показали многочисленные эксперименты, при умеренной и слабой транскрипции нуклеосомы (гистоны) сохраняются на ДНК- Эго подтверждают и биохимические данные, и электронная микроскопия, причем структура этих нуклеосом, вероятно, ие отличается от обычных нуклеосом неактивного хроматина. [c.255]

    Эта модель структурной динамики транскрипционно активного хроматина не является единственной. Так, в активно транскрибируемом хроматине рибосомных генов гриба Physarum обнаружены развернутые нуклеосомы, в которых гистоны остаются связанными в частично или полностью линеаризованной ДНК нуклеосомы. Зга модель предполагает, что в процессе транскрипции происходит линеаризация ДНК, но РНК-полимераза не смещает молекулы гистонов с транскрибируемых участков. Напомним, что регуляторный белок TFHIA генов 5S РНК шпорцевой лягушки прочно связывается с регуляторным участком, лежащим в транскрибиру--емой области, и не диссоциирует при прохождении РНК-полимеразы III. [c.256]

    Модель прямого запоминания в процессе репликации должна предусматривать сохранение регуляторных белков и гистонов в их модифицированном состоянии на активных участках хроматина. Однако пока отсутствуют прямые экспериментальные данные, подтверждающие это предположение. [c.258]

    Некоторое недоумение на первый взгляд может вызвать другая работа, где гидрофобная обратнофазовая хроматография использовалась, как и выше, для фракционирования негистоновых белков хроматина. В этой работе предварительно отделенные от нуклеиновых кислот и гистонов (на оксиапатите) белки хроматина сначала диали-зовали против довольно концентрированного раствора сульфата ам- [c.182]

    На основе описанных выше данных была сформулирована современная точка зрения, согласно которой основная функция гистонов состоит в том, чтобы обеспечить необходимую упаковку ДНК. Однако иногда гистон Н1 называют общим репрессором, удерживающим хроматин в компактно упакованном состоянии, препятствующем транскрипции. Поскольку процесс инициации митоза сопровождается фосфорилированием гистона Н1 при помощи специальной протеинкиназы, можно предположить, что этот гистон играет какую-то иную роль [ЗОО]. Другие гистоны, особенно Р4, подвергаются множеству модифицирующих воздействий, в том числе ацетилированию и фосфорилированию (обратимо) и -метилированию (необратимо) [301]. Значение этих реакций в регуляции таких процессов, как транкрипция и репликация, до сих пор неясно. [c.304]

    У эукариот ДНК сосредогочена в четко организованном ядре, а также в митохондриях и хлоропласта X. Ядерная ДНК соединена с основными белками (гистонами) нековалентными связями. Комплекс ДНК с белками называется хроматином и представляет основу генетического материала хромосом. [c.43]


Смотреть страницы где упоминается термин Гистон в хроматине: [c.524]    [c.525]    [c.237]    [c.238]    [c.239]    [c.243]    [c.246]    [c.251]    [c.255]    [c.258]    [c.258]    [c.136]    [c.182]    [c.234]    [c.235]    [c.235]    [c.305]    [c.309]    [c.310]    [c.311]    [c.426]    [c.303]    [c.304]    [c.53]   
Биохимия человека Т.2 (1993) -- [ c.64 , c.65 ]

Биохимия человека Том 2 (1993) -- [ c.64 , c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Белки хроматина также Гистоны Негистоновые белки

Гистоны

Гистоны взаимодействие с фибриллой хроматина

Гистоны включение в хроматин

По мере репликации ДНК в состав хроматина включаются новые гистоны



© 2025 chem21.info Реклама на сайте