Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматин состав

    Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон, которые содержат 60% белка, 35% ДНК и, вероятно, 5% РНК (разд. 2.7). Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель (рис. 27-21). ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы - нуклеосол<ы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических бактериальные хромосомы не содержат гистонов в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК. [c.873]


    В состав хроматина входят как нуклеосомные ги- [c.370]

    Клетки эукариот богаты различными органеллами. Прежде всего это клеточное ядро, в котором происходят все процессы с участием ядерной ДНК, входящей в состав хроматина, в первую очередь процессы репликации, репарации и транскрипции. Даже в пределах ядра имеется распределение процессов между отдельными его частями. Наиболее четко это выражено в случае синтеза рибосомных РНК и формирования рибосом. Участки хроматина, содержащие гены рибосомных РНК, находятся в виде петель хроматина в определенной области ядра, называемой ядрышком. Здесь происходит их транскрипция с помощью РНК-полимеразы I и первые фазы формирования рибосом. Рибосомные белки, необходимые для сборки рибосом, поступают из цитоплазмы, в которой сосредоточено их производство. [c.432]

    Главным компонентом холодно-фенольной фракции НК является прочно связанная или остаточная ДНК. Последняя связана с белками и, по-видимому, входит в состав особых структурных элементов хроматина и хромосом, содержащих, кроме ДНК и белков РНК, и липиды. [c.66]

    Полиамины, в том числе и диамин путресцин, содержатся практически во всех тканях и входят в основном в состав ядерного хроматина. Известно их участие в регуляции клеточного деления, однако молекулярные механизмы их действия остаются не до конца выясненными. [c.365]

    Ахметов Р. Р., Кон а рев В, Г. и др. Состав и ультраструктура хроматина клеточного ядра гороха. В сб. Структура и функции клеточного ядра . Наука , 1967. [c.23]

    АМИНОКИСЛОТНЫЙ СОСТАВ ГИСТОНА ХРОМАТИНА У РАСТЕНИЙ РАЗЛИЧНЫХ ВИДОВ [c.35]

    Гистон Н1 существенно отличается от других гистонов. Он не входит в состав минимальных нуклеосом (см. раздел 4 этой главы) и участвует в организации 30-нм фибриллы хроматина. Его молекулярная масса превышает 20 ООО. Положительно заряженные аминокислотные остатки Н1, главным образом лизины, находятся в основном в С-конце молекулы и в меньшей степени в Ы-концевой части. Центральная область N-кoнцeвoй половины молекулы богата гидрофобными остатками и образует глобулу. Н1 обладает выраженной доменной структурой, мягкое расщепление трипсином легко делит его на глобулу и хвост . Помимо лизинов хвост богат остатками пролина и глицина и имеет неупорядоченную конформацию. [c.235]

    Рассмотренный элемент называется усилителем транскрипции, или энхансером. Он не входит в состав промотора, но способен увеличивать частоту инициирования транскрипции. Как он это делает Как он может осуществлять свое действие на таких больших расстояниях Одна из возможностей состоит в том, что энхансер изменяет всю структуру матрицы, например влияя на организацию хроматина или изменяя плотность суперспирализации ДНК. Но возможно также, что энхансер обеспечивает расположение матрицы в определенном месте в клетке, например прикрепляя ДНК к ядерному матриксу. Существует еще одна возможность, хотя и менее вероятная,-энхансер непосредственно уча.ствует в связывании РНК-полимеразы (после чего фе >мент начинает двигаться собственно к промотору). [c.154]


    L-Л.-необходимый компонент пищи для человека и животных (незаменимая аминокислота). Встречается во всех организмах в составе молекул белков и пептидов, входит в состав активных центров ферментов, напр, аминотранс-фераз в больших кол-вах содержится в гистонах и протаминах (белки, входящие в состав хроматина). Его содержание в продуктах (на сухую массу) составляет в пшеничной муке 1,9%, говядине 10%, коровьем молоке 8,7%. [c.592]

    Для оценки состояния ДНК в клеточном ядре важно знать состав белковых компонентов хроматина. При этом особый интерес представляют содержание основных белков, соотношение [c.189]

    Состав хроматина типичного высшего растения (гороха) представлен в табл. 7. [c.35]

    Как уже обсуждалось выше, большая часть нуклеосом клетки упакована в хроматиновую фибриллу 30 нм, которая затем подвергается дальнейшей конденсации. Трудно себе представить, что хроматин, находящийся в таком состоянии, транскрибируется РПК-полимеразой, и при этом упаковка нуклеосом, входящих в его состав, не подвергается значительным изменениям (рис. 9-33). Некоторые эксперименты дают основание предполагать, что отчасти такое изменение структуры имеет место (см. рис. 9-50). [c.116]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    В системе регуляции активности генов у эукариот имеется дополнит, уровень, отсутствующий у бактерий, а именно-перевод всех нуклеосом (повторяющихся субъединиц хроматина), входящих в состав транскрипционной единицы, в активную (деконденсированную) форму в тех клетках, где данный ген должен быть функционально активен. Предполагается, что здесь задействован набор специфических Р. б., не имеющих аналогов у прокариот. Эти белки не только узнают специфич. участки хроматина (или,ДНК), но и вызы-427 [c.218]

    СОСТАВ ОЧИЩЕННОГО ХРОМАТИНА ИЗ ЗАРОДЫШЕЙ ГОРОХА И ПОЛУЧЕННОГО ИЗ НЕГО НУКЛЕОГИСТОНА [8] [c.35]

    Гистоны — чрезвычайно интересный компонент хроматина. Они характеризуются высоким содержанием основных аминокислот как показано в табл. 8, примерно каждый четвертый остаток — это либо аргинин, либо лизин. Катионные группы гистона связываются с анионными фосфатными остатками ДНК, образуя так называемый нуклеогистоновый комплекс хроматина. В состав хроматина одного и того-. [c.35]

    В хроматине, как явствует из табл. 7, это отношение равно примерно 1. По-видимому, отсюда следует, что только часть ДНК хроматина входит в состав нуклеогистона. Это заключение подтверждается тем фактом, что плавление хроматина протекает в два этапа (фиг. 17) на [c.36]

    Протамины — простые белки, имеющие основной характер и входящие в состав хроматина. Основной характер протаминов обусловлен высоким содержанием в них остатков диаминомонокарбоновых аминокислот. Содержание последних в протаминах очень высокое (50—80% содержания всех аминокислот). По сравнению с гистонами протамвны более основные белки. [c.25]

    Конарев В. Г. 19646. Состав и свойства хроматина. Первый Всес. биохим. съезд (тезисы докл.), И, дополн. (секц.) заседания, 1—9, 45. [c.22]

    В ядрах клеток всех эукариотов ДНК присутствуют в виде ассоциатов с гистоновыми белками. Эти ассоциаты, или хрома-тиновые фибриллы, представляют собой надмолекулярную структуру, повторяющимся элементом которой является частица, называемая нуклеосомой. Каждая нуклеосома состоит из восьми гистонов (по две молекулы гистонов Н2А, Н2В, НЗ и Н4) и включает участок намотанной на этот белковый октамер нити ДНК длиной в 140 нуклеотидных пар. Продолжение этой нити образует перемычку со следующей нуклеосомой. В зависимости от т ого, какому организму или какой ткани этого организма принадлежит данная клетка, перемычка между нуклео-сомами может содержать от О (дрожжи) до 100 (сперма морского ежа) нуклеотидных пар. Стафилококковая нуклеаза расщепляет молекулу ДНК в области перемычек с образованием фрагментов, длина которых кратна длине участка ДНК, входящего в состав нуклеосомы [136]. После отделения от белков эти фрагменты можно разделить с помощью электрофореза в агарозном геле и таким образом обнаружить различия в структуре повторяющегося звена хроматина (рис. 10.13, Л). При обработке хроматина ДНКазой I нуклеосомальная ДНК расщепляется на фрагменты, содержащие в среднем 10,4 нуклеотидных пар (я —целое число) [137]. Эти сравнительно более короткие фрагменты ДНК можно разделить с помощью электрофореза в полиакриламидном геле (рис. 10.13, ). [c.193]


    У высших организмов ДНК находится в хромосомах. Хромосомы имеют разную форму, которая зависит от центрической перетяжки. В каждой хромосоме содержится гигантская молекула ДНК (ММ 101 Да, линейная длина — несколько сантиметров), которая составляет основу хроматина. Хроматин — комплекс ДНК с РНК и белками (ДНК — 30-45%, гистоны — 30-50, негистоновые белки - 4-30, РНК - до 10%). Структурная организация хроматина такова, что позволяет использовать одну и ту же генетическую информацию ДНК, присущую данному виду организма, по-разному в специализированных клетках. При этом основная часть хроматина не активна. Она содержит плотно упакованную ДНК. Активный хроматин составляет в разных клетках от 2 до 11%. Упаковка (компактизация) ДНК следующая. Нуклеосома содержит отрезок двуспиральной ДНК, равный по протяженности 140 парам оснований, обвитый в 1,5 оборота вокруг ядра, состоящего из гистонов (2Н1, 2Н2а, 2Н2в и 2Н3). Степень компактизации — 5 раз. Примерно 90% ДНК входит в состав нуклеосом, 10% содержится в перемычках между нуклеосомами (30-60 пар, связанных с гистоном Н ). Считают, что нуклеосомы содержат фрагменты молчащего хроматина, а перемычки — активного. При развертывании нуклеосомы весь хроматин активный. Диско-идные нуклеосомы имеют диаметр 10 нм и высоту 5 нм. Из них образуются фибриллы. Фибриллы толщиной Ю нм состоят из ряда нуклеосом, касающихся друг друга своими краями и ориентированных плоскими поверхностями вдоль оси фибрилл. Фибриллы скручиваются в спираль, на виток которой приходится 6-7 нуклеосом. В результате образуется хроматиновое волокно диаметром 30 нм. Для того чтобы образовалась митотическая хромосома нормального размера, волокно такого диаметра должно подвергнуться дополнительной компактизации с уменьшением результирующей длины в 100 раз. [c.293]

    Третичная структура ДНК эукариот также проявляется в многократной суперспирализации молекулы, однако в отличие от прокариот она осуществляется в составе комплексов ДНК с белками (нуклеопротеины). Основная нуклеопротеиновая структура, содержащая ДНК, — это хроматин (дезоксирибонуклеопротеин). Структурная организация хроматина сложна и изучена далеко не полностью. Примерно V3 массы хроматина приходится на белки, остальное количество — на ДНК. Кроме того, в состав хроматина входит до 10 % РНК. Половина всех белков хроматина — это гистоны. На электронно-микроскопических фотографиях хроматина легко можно рассмотреть образования, напоминающие бусы. Каждая бусина содержит 8 молекул гистонов и намотанную на них (примерно полтора витка) молекулу ДНК длиной около 150 нуклеотидных пар. Такую структуру называют нуклеосомой (рис. 8.9). При таком способе укладки длина молекулы ДНК уменьшается примерно в 7 раз по сравнению с вытянутой спирализованной молекулой. [c.277]

    Реализация различных вариантов экспрессии определенных генов в случае а- или а-клеток обусловлена образованием различных РНК-транскриптов в зависимости от типа последовательности Y, присутствующей в локусе МАТ и содержащей область инициации транскрипции. Характерно, что инициация транскрипции происходит только в области последовательности Y, входящей в состав локуса МАТ, и не происходит на соответствующих последовательностях в локусах HMRa и HMLa, что, вероятно, отражает различия в структуре хроматина в ло- [c.235]

    После обсуждения структуры ДПК и белков, входящих в состав хромосомы, рассмотрим ее строение в целом. Оказывается, ДПК в хромосоме не только упакована с помощью гистонов в регулярно повторяющиеся нуклеосомы, но, кроме гого, хитроумным способом организована вместе с другими белками в серию субдоменов, обладающих различньгми свойствами. Эти структуры более высокого порядка являются удивительной особенностью хроматина эукариотических клеток до сих пор остается загадкой, как именно такие домены функционируют. [c.118]

    Наличие поперечной исчерченности составляет общую черту миготических хромосом даже таких далеких друг от друга видов, как человек и дрозофила. Более того, картина распределения полос в хромосомах почти не изменилась за долгие периоды эволюции. Например, почти каждой хромосоме человека соответствует аналог в кариотипе шимпанзе, гориллы и орангутана (хотя в результате слияния одной пары хромосом у человека имеется 46. а не 48 хромосом, как у обезьян), причем картина распределения полос у них практически одинакова. Все это лишний раз указывает на большое значение пространственной организации ДНК в составе хромосом для экспрессии соответствующих генов, а само существование полос, возможно, отражает какие-то черты функциональной организации хроматина. Почему образуются такие полосы, до сих пор является загадкой. Даже наиболее тонкие полосы, изображенные на рис. 9-40, должны содержать не менее 30 петель, а суммарный нуклеотидный состав столь длинных последовательностей ДНК (более миллиона пар оснований, что соответствует размеру среднего бактериального генома), но-видимому. близок к среднестатистическому. Известно, что как АТ-богатые. так и ОС-богатые полосы содержат гены. [c.123]

    Схема строения хромосом типа ламповых щеток приведена на рис. 9-42. Больщие петли, состоящие из деконденсированного хроматина, отходят в стороны от оси хромосомы. Опыты по гибридизации нуклеиновых кислот показали, что определенная петля всегда содержит одн> и ту же последовательность ДНК, которая во время роста ооцита располагается строго определенным образом. Следовательно, эти петли соответствуют фиксированным единицам упаковки хроматина, который деконденсировался и стал транскрипционно активным. Поскольку петля среднего размера содержит приблизительно 100 ООО пар оснований, каждая петля может соответствовать одной петле хроматина, описанного выще (см. разд. 9.2.1). Многие петли постоянно транскрибируются по всей длине, другие содержат протяженные участки хроматина, который не транскрибируется вовсе. Больщая часть хроматина не входит в состав петель и остается в сильно конденсированном состоянии в хромомерах этот хроматин, как правило, не транскрибируется. Короткие области хроматина, которые не обладают высокой степенью конденсации и активно не транскрибируются, соединяют соседние хромомеры вдоль хорощо выраженной оси хромосомы. [c.124]

    Хромосомы типа ламповых щеток являются необычными в том отнощении, что уровень их транскрипции выще, а большинство образующихся транскриптов РНК длиннее, чем те, которые синтезируются на других хромосомах. Однако есть данные, что молекула ДНК, входящая в состав любых интерфазных хромосом, тоже подразделяется на различные области, каждая из которых отделена от своих соседей границей. Но-видимому, и в данном случае хроматин в разных областях упакован по-разном> (например, в виде петель, хромомеров или хроматина, входящего в состав оси между хромомерами). [c.124]

    Связь между строением хроматина и временем репликации ДНК подтверждается данными о времени репликации отдельных генов. Популяцию растущих клеток метили бромдезоксиуридином, после чего клетки тут же разделяли по размеру центрифугированием. Так как рост клеток связан с клеточным циклом, клетки большего размера окажутся старше , и их ДНК, таким образом, будет помечена на более поздней стадии S-фазы. Из клеток каждого типа выделяли ДНК, меченную BrdU, и гибридизовали ее с серией известных ДНК-зондов, чтобы определить, какие гены она содержит. Поскольку ДНК, в состав которой входит BrdU, более плотная, ее легко можно отделить от обычной ДНК пу- [c.139]

    Таким образом, исследователи владеют эффективным методом, позволяющим определить время репликации любого гена, для которого имеется ДПК-зонд. Оказалось, что во всех изученных клетках гены домащнего хозяйства (т. е. те. которые активны во всех клетках) реплицируются в ранней 8-фазе. Напротив, гены, активные в некоторых типах клеток, реплицируются рано лищь в тех клетках, где они активны, и позже в других типах клеток. Например, при изучении таким способом длинных последовательностей гена иммуноглобулина размером 300000 нуклеотидных пар оказалось, что в клетках, где этот ген активен, все области хроматина, в состав которого он входит, завершают свою репликацию в начале 8-фазы. Вероятно, это связано с существованием внутри гена нескольких точек начала репликации, активирующихся примерно в одно и то же время. Иная картина наблюдается в тех клетках, где синтез иммуноглобулина отсутствует. С помощью ДИК-зондов была выявлена единственная репликационная вилка, которая возникла на одном конце этого участка хромосомы примерно через час после начала 8-фазы и затем двигалась вдоль ДНК с постоянной скоростью около 3000 нуклеотидов в минуту. [c.140]

    Внутренняя часть ядра-это не случайно перемешанные молекулы РНК, ДНК и белков, входящих в его состав. Выше уже шла речь о том, что ядрышко представляет собой эффективное устройство для сборки рибосом, а кластеры сплайсосом, но-видимому, организованы в виде дискретных островков, где и происходит сплайсинг РНК (см. рис. 9-89). Упорядоченность структур хорошо видна и на электронных микрофотографиях ядерных пор хроматин расположен вдоль внутренней ядерной мембраны, но отсутствует вокруг каждой ядерной поры и под ней (т. е. проход между цитоплазмой и нуклеоплазмой свободен (рис. 9-100). Более того, оказалось, что в некоторых случаях положение ядерных пор на ядерной оболочке не случайно, а строгим образом упорядочено (рис. 9-101). Подобная упорядоченность свидетельствует о соответствующей организации ядерной ламины, к которой и прикреплены поры. [c.169]

    Это было продемонстрировано в экспериментах с мутантными особями, в клетках которых одну из Х-хромосом присоединили к концу аутосомы (неполовой, соматической хромосомы). В таких мутантных клетках участки аутосом, граничащие с инактивированной Х-хромосомой, часто конденсировались в гетерохроматин, что сопровождалось наследуемой инактивацией содержащихся в них генов. Полученные данные позволяют предполагать, что инактивация Х-хромосом - это кооперативный процесс, который можно рассматривать как кристаллизацию , распространяющуюся из центра кристаллизации, расположенного на Х-хромосоме. После завершения конденсации хроматина такая конденсация наследуется в холе всех последуюших репликаций ДПК благодаря механизму, аналогичному тому, который представлен на рис. 10-35. Конденсированная хромосома может вновь стать активной при формировании половых клеток. Таким образом, в ДПК, входящей в состав этой хромосомы, не происходит никаких изменений. [c.209]

    Хроматин — это хромосомный материал, экстрагируемый из ядер эукариотических клеток . В его состав входят очень длинные двухцепочечные молекулы ДНК, небольшие основные белки—гистоны, общая масса которых примерно равна массе ДНК, кислые белки с молекулярной массой, большей чем у гистонов, а также небольшое количество РНК. Электронная микроскопия хроматргаа выявила наличие в нем сферических частиц (нуклеосом) размером около 10 нм, соединенных друг с другом нитями ДНК (рис. 38.1). [c.64]


Смотреть страницы где упоминается термин Хроматин состав: [c.136]    [c.441]    [c.87]    [c.294]    [c.111]    [c.35]    [c.453]    [c.394]    [c.14]    [c.370]    [c.130]    [c.130]    [c.130]    [c.138]    [c.65]   
Биохимия растений (1968) -- [ c.35 , c.38 ]

Искусственные генетические системы Т.1 (2004) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Изменения в химическом составе хроматина при его активации

Компонентный состав и строение хроматина

По мере репликации ДНК в состав хроматина включаются новые гистоны

Упругие торзионные напряжения в ДНК в составе активного хроматина и их возможная роль в регуляции транскрипции

Хроматин химический состав



© 2025 chem21.info Реклама на сайте