Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь нековалентная

    Наряду с ковалентными взаимодействиями и координационными связями, рассмотренными в гл. IV, между атомами и многоатомными частицами существуют нековалентные взаимодействия. Они бывают [c.100]

    Наряду с ковалентными взаимодействиями и координационными связями (см. гл. IV) между атомами н многоатомными частицами существуют нековалентные взаимодействия. Они бывают трех типов взаимодействия между ионами, между диполями и специфические взаимодействия некоторых частиц, содержащих атомы водорода— так называемые водородные связи. [c.111]


    По мере уменьшения температуры кинетическая энергия поступательного движения молекул газа падает и при некоторой температуре она уже оказывается не в состоянии преодолеть силы межмоле-кулярных нековалентных взаимодействий и молекулы собираются вместе, образуя жидкость. Если между частицами жидкости действуют только вандерваальсовы силы, которые в некотором грубом приближении можно рассматривать как ненаправленные, то взаимное расположение молекул не играет существенной роли, и они сохраняют возможность перемещения относительно друг друга, что является основной характеристикой жидкого состояния. Если между молекулами жидкости могут образовываться водородные связи, то некоторое число молекул оказывается объединенным в ассоциаты, в пределах которых молекулы определенным образом ориентированы. Однако размеры этих ассоциатов, как правило, невелики, и они могут достаточно свободно перемещаться один относительно другого. Отдельные молекулы могут сравнительно легко выходить из состава одного ассоциата и переходить в другой. Таким образом, основная характеристика жидкости, а именно способность ее молекул перемещаться относительно друг друга без отрыва от основной массы вещества, сохраняется и в этом случае. [c.112]

    Для данного антитела на связывание антигена влияет наличие активного центра и его конформационная целостность. Связывание большее, чем ожидаемое, может также являться результатом неспецифического взаимодействия с определимым веществом. В случае систем твердофазного анализа использование поверхностно-активных веществ, чтобы сделать поверхность менее гидрофобной, может уменьшить вторую проблему, ио высокая концентрадия поверхностно-активного вещества может привести также к потере антител, если оии связаны нековалентно. [c.602]

    В табл. 18 приведены также температуры кипения ряда соединений с близкой молекулярной массой, но отличающихся по своей химической природе и тем самым по характеру нековалентных взаимодействий между молекулами. Видно, что самые низкие температуры кипения у веществ, молекулы которых неполярны, — пропана и пропилена. Это и понятно, если учесть, что в них действуют лишь дисперсионные силы. Заметно выше температуры кипения ме-тилхлорида и диметилового эфира, так как их молекулы полярные, обладаюш,ие постоянным дипольным моментом, а между ними в дополнение к дисперсионным силам действуют силы, обусловленные индукционным и ориентационным взаимодействием. Еще существенно выше температуры кипения у аминов, этилового спирта и муравьиной кислоты, молекулы которых способны образовывать водородные связи. Уместно в этой связи упомянуть воду, температура кипения которой 100°С, притом, что температура кипения близкого к ней по молекулярной массе неполярного метана —162°С [c.126]


    Во многих случаях в образовании вторичной структуры участвуют взаимодействия различной природы. По аналогии с конформациями, вторичные макромолекулярные структуры также могут образовывать определенную иерархию уровней организации, к-рые способны к взаимным превращениям лишь при одновременном распаде и перераспределении многих связей нековалентной природы. [c.58]

    В кислых растворах, напротив, равновесие (8) смещено влево и фермент неактивен [63, 64]. Однако положение этого равновесия не является определяющим фактором, так как рКа группы, которая контролирует инактивацию фермента, близок к 7 как для 2п2+-, так и для Со + фосфатаз [53, 54]. При pH 7 основная часть фосфата связана нековалентно [63]. Предполагается, что для ак- [c.638]

    Гетерополимеры (гибриды), состоящие из двух и более полипептидных цепей связаны нековалентно [c.108]

    Липидный бислой определяет основные структурные особенности биологических мембран, тогда как белки ответственны за большинство мембранных функций. Они выступают в качестве специфических рецепторов и ферментов, осуществляют транспорт через мембрану различных веществ и т. д. Большинство мембранных белков пронизывает бислой в виде одиночной а-спирали но есть и такие, которые пересекают бислой несколько раз в виде серии а-спиралей. Следующая группа белков ассоциирует с мембраной, не пересекая бислой, а прикрепляясь к той или другой стороне мембраны. Многие из этих белков связаны нековалентными взаимодействиями с трансмембранными белками, есть и такие, которые [c.376]

    Кинетика первой стадии изучена весьма слабо [23, 241 это связано с методическими трудностями при измерении почти диффузионных скоростей (см., например, [25] и гл. V). Детально изучено равновесное состояние сорбции субстрата на ферменте. Найдено, что положение равновесия определяется практически лишь нековалентным взаимодействием с белком боковых химически инертных фрагментов молекулы субстрата. [c.128]

    ФЕРМЕНТЫ (энзимы), биологические катализаторы, ускоряющие хим. р-ции в живых организмах. Все Ф.— белки. М. б. связаны с небелковыми компонентами кофакторами), такой комплекс иаз. холоферментом, а его белковая часть — апоферментом. Многие Ф.— комплексы, состоящие из неск. молекул белка (субъединиц), соединенных между собой нековалентными связями. Известно более 2000 Ф. Согласно рекомендациям комиссии по ферментам Международного биохим. союза, Ф. в зависимости от характера ка- [c.617]

    Бывают и промежуточные типы кристаллических решеток Например, графит носит в себе черты ковалентной, молекулярной и металлической решеток. Атомы С в графите связаны между собой системой sp -гибридных (т-связей, образуя единую плоскую систему сконденсированных бензольных колец (рис. 54). Поэтому в пределах одного такого плоского слоя имеет место ковалентная решетка. Поскольку все 2р-орбитали, ориентированные перпендикулярно плоскости слоя, образуют единую многоцентровую л-ор-биталь, то электроны могут относительно свободно перемещаться вдоль этой плоскости, чем и обусловлена довольно высокая электропроводность графита. В то же время параллельные слои связаны между собой нековалентными взаимодействиями, что типично для молекулярных кристаллов. [c.119]

    Частицы в растворе удерживаются в жидкой фазе, как и в случае чистой жидкости, силами нековалентных взаимодействий. При этом, однако, в растворе можно выделить три разных типа взаимодействия а) между частицами растворителя б) частиц растворенного вещества с частицами растворителя в) между частицами растворенного вещества. Первые два типа характерны для любого раствора, без них существование раствора немыслимо. Третий тип существен лишь при достаточно высокой концентрации растворенного вещества. В разбавленном растворе, при низкой концентрации растворенного вещества частицы последнего практически не встречаются друг с другом и взаимодействие между ними не оказывает заметного влияния на многие свойства раствора. Поэтому многие закономерности поведения таКих растворов существенно проще. В связи с этим в физической химии широко используется понятие предельно разбавленный раствор, как раствор, в котором можно пренебречь взаимодействием частиц растворенного вещества. Для теории растворов понятие предельно разбавленного раствора имеет такое же значение, как для теории газов представление об идеальном газе. [c.121]

    Двуспиральная ДНК, в которой заложена вся наследственная информация вируса или клетки, представляет собой комплекс, образованный за счет нековалентных взаимодействий (в том числе водородных связей между гетероциклическими основаниями, см. 7.2) двух молекул ДНК. [c.261]

    Все макроскопические свойства системы, рассматриваемые как функции параметров, определяющих состояние системы, называют функциями состояния системы. Одна из важнейших функций состояния — внутренняя энергия. Внутренней энергией называют ту часть энергии системы, которая не связана с кинетической энергией ее движения как целого и нахождением ее во внешнем силовом поле. Внутренняя энергия складывается из энергии термического возбуждения (энергии поступательного, вращательного, колебательного движения молекул, энергии их электронного возбуждения), энергии химических связей и энергии нековалентных взаимодействий. По определению внутренняя энергия вещества при данных температуре и давлении не зависит от того, находится ли тело в состоянии покоя или движется, хотя от этого существенно зависят в первом случае потенциальная, а во втором — кинетическая энергия тела. [c.133]


    Главные особенности строения макроскопических систем связаны прежде всего с тем, что эти системы образованы из огромного множества частиц со своей внутренней структурой, а между этими частицами, в свою очередь, действуют определенные силы (например, нековалентные взаимодействия, рассмотренные в гл. 7). Такая структурная иерархия обусловливает своеобразие возбужденных состояний этих систем, так как наряду с внутренними состояниями отдельных частиц существуют относительные движения этих частиц, интенсивность и характер которых и определяют строение макроскопической системы в целом. В зависимости [c.122]

    Адсорбционный механизм регуляции активности гексокиназы скелетной мышцы (И изозим гексокиназы) реализуется в повышении каталитической эффективности фермента вследствие нековалентной иммобилизации на митохондриальных мембранах. Связанная форма фермента по сравнению со свободной обладает большим числом оборотов, повышенным сродством к субстрату глюкозе и менее чувствительна к ингибирующему действию продукта реакции глюкозо-6-фосфата. Связь фермента с наружной митохондриальной мембраной осуществляется преимущественно с участием фосфолипидного компонента мембран и регулируется внутриклеточными метаболитами. Так, Mg + и глюкоза являются адсорбирующими фермент реагентами, АТФ и глюкозо-6-фос-фат (Г-6-Ф) солюбилизируют фермент, контролируя тем самым соотношение разных по каталитической эффективности форм фермента [c.374]

    Определение количества субъединиц, вступивших в реакцию, проводится путем сравнения концентрации иммобилизованного белка до и после обработки 8 М мочевиной. Снижение концентрации белка в суспензии агарозы после инкубации в мочевине в 4 раза позволяет использовать препарат ЛДГ для получения мономера. Обработка иммобилизованного белка 1,5 М мочевиной приводит к разрушению нековалентных взаимодействий между субъединицами ЛДГ, но не влияет на ковалентную связь субъединицы с матрицей (агарозой). Удаление мочевины из системы при промывании буфером ведет одновременно и к удалению диссоциировавших субъединиц. Остающийся связанным белок является мономером ЛДГ, который используется для дальнейших исследований. [c.386]

    Цитохром с. Восстановитель цитохромоксидазы цитохром с представляет собой очень стабильный гемопротеин, состоящий из 104 аминокислот и гема с. Гем ковалентно связан с апобелком (через SH-группы ys- 4 и ys- 7). Это отличает цитохромы типа с от цитохромов а- и Ь-типов, где гемы связаны нековалентно. П. М. Вуд полагает, что прочная связь гема с апоцитохромами типа с обусловлена тем, что все цитохромы такого типа расположены на внешней стороне мембраны митохондрии или бактерии. Нековалентно связанный гем мог бы диссоциировать и разбавиться цитозолем (митохондрии) или периплазмой, а затем и внешней средой (бактерии). [c.88]

    Уравнение (10.12) можно решить для энергий других состояний. Однако приведенные выше уравнения выведены при допущении, что лиганды-это точечные заряды или точечные диполи и что связь металл— лиганд нековалентна. Если это допущение справедливо, то определенную таким образом величину Dq можно подставить в уравнение (10.12) и рассчитать, исходя из характеристик атомного спектра газообразного иона, энергию [10] и энергию других двух уровней в комплексе. Частоты ожидаемых спектральных переходов определяют из полос, соответствующих разностям между энергиями уровней T g F) - и TigiP) - Л2д. Э К С п С р И м С н т а Л b н ы С энергии, полученные из спектров, почти всегда ниже, чем величины, рассчитанные таким путем. Отклонение приписывают ковалентности. [c.94]

    Другим внешним фактором, тг1кн е играющим сущест-вепную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает кулоновские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-динолг.ное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обо. шачают термином сольватация , приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.75]

    Упорядоченная структура предполагает наличие пяти- и ще-стичленных колец, а не цепей. Возможно, в качестве простейшего предположения следует рассмотреть углеводороды, например бензол, нафталин или индол. Однако эти соединения совершенно гидрофобны, а такое свойство — недостаток, поскольку биологические процессы проходят в водной среде. Кроме того, углеводороды не способны участвовать в различных нековалентных взаимодействиях в образовании водородных связей и в особенности электростатических связей. [c.105]

    Последовательность аминокислот, или первичная структура фермента, определяет вторичную и третичную (трехмерную) структуры, т. е. свертывание пептидной цепи в макромолекуляр-ную глобулу, имеющую некоторую определенную полость для взаимодействия с субстратом или, если необходимо, с кофермен-том. Ферменты обладают сложной и компактной структурой, в которой боковые цепи полярных аминокислот, находящиеся на поверхности молекулы, направлены к растворителю, а боковые цепи неполярных в общем случае ориентированы внутрь молекулы, от растворителя. Трехмерная структура поддерживается большим количеством внутримолекулярных нековалентных взаимодействий аполярной, или гидрофобной, природы, а также благодаря ионным взаимодействиям, дисульфидным мостикам, водородным связям, иногда солевым мостикам [57]. Гидрофобные взаимодействия имеют наиболее важное значение, поскольку они, вероятно, ответственны за большую величину свободной энергии связывания, которая наблюдается при ферментсубстратных взаимодействиях. [c.202]

    В связи с тем что деформация субстратов нри нековалентном связыванин с лизоцимом маловероятна, особого внимания заслуживают так называемые аналоги переходного состояния в катализе лизоцимом [23, 90], или соединения, способные очен > эффективно связываться с ферментом и обладающие структурой, по ряду признаков подобной структуре субстрата в переходном состоянии реакции. Наиболее известным аналогом переходного состояния в катализе лизоцимом является 6-лактон, полученный окислением восстанавливающего сахаридного кольца 1 -ацетил-хитотетраозы [c.166]

    Молекулярные кристаллы образуются из атомов или молекул, которые удерживаются в кристалле вандерва-альсовыми взаимодействиями или водородными связями. На рис. 50 для иллюстрации приведена структура молекулярного кристалла I а. Молекулы иода располагаются так, что их центры масс занимают вершины прямоугольного параллелепипеда и центры граней, причем в решетке существуют две различные ориентации молекул иода. Так же как и в случае жидкости, полуколичественной мерой энергии взаимодействия между частицами в кристалле является температура, при которой происходит изменение агрегатного состояния, в данном случае температура плавления. Молекулярные кристаллы, в которых частицы удерживаются слабыми нековалентными взаимодействиями, характеризуются невысокими температурами плавления. [c.117]

    Спектр поглощения должен содержать набор тех же линий, что представлены в спектре испускания. В случае молекул спектр получается более сложным. Это связано с тем, что как энергия основного состояния молекулы, поглощающего электромагнитное излучение, так и энергия электронно-возбужденных состояний, образующихся в результате поглощения излучения, не являются столь однозначно определенными величинами, как для атомов. Они характеризуются набором возможных значений энергии колебаний и вращения молекулы. Поэтому вместо одной линии в спектре поглощения молекулы каждод1у электронному переходу соответствует множество линий, отвечающих различным многочисленным вариантам сопутствующих переходов между колебательными и вращательными состояниями молекулы. Практически за исключением спектров поглощения простейших многоатомных частиц, находящихся в газовой фазе (когда отсутствуют дополнительные возмущения, вносимые нековалентными взаимодействия-I I I II I м [ I I I I I ми), все линии, соответствующие одному [c.152]

    Вспомним, что энергия электростатических взаимодействий между ионами убывает обратно пропорционально первой степени расстояния. В то же время энергия ван-дер-ваальсовых взаимодействий убывает обратно пропорционально шестой степени расстояния, а водородные связи вообще возникают лишь при прямом контакте между взаимодействующими частицами. Поэтому электростатические взаимодействия начинают проявляться на значительно больших расстояниях между частицами, чем любые другие виды нековалентных взаимодействий. Следовательно, они проявляются при существенно более низких концентрациях растворенного вещества, чем другие нековалентные взаимодействия. Поэтому в то время как коэффициенты активности незаряженных частиц часто можно считать близкими к единице для довольно концентрированных растворов, учет отклонений от законов идеальных растворов для ионов становится существенным при низких концентрациях. Этот учет для разбавленных растворов электролитов делается в теории Дебая — Гюккеля. Вывод основного уравнения этой теории довольно громоздок и в нашем курсе мы ограничимся лишь качественным рассмотрением вопроса. [c.234]

    По ряду основных признаков физическая адсорбция имеет определенное схо,1ство с конденсацией газов (паров) обратимость и сравнительно большая скорость достижения равновесия, близкие энтальпии процессов. Это объясняется общностью природы межмо-лекулярных взаимодействий, приводящих к конденсации и к физической адсорбции — в обоих случаях главную роль играют нековалентные по природе силы Ван-дер-Ваальса и в некоторых случаях— водородные связи. Природа этих сил определяет еще одну очень важную особенность физической адсорбции — неспецифич-ность. Один и тот же газ практически одинаково адсорбируется на поверхности различных веществ, при этом он практически никак не влияет на структуру поверхностного слоя твердого адсорбента, а сами молекулы адсорбата сохраняют свою индивидуальность и десорбируются неизменными. [c.317]

    Силы, действующие при образовании комплекса фермент—субстрат, часто относят к нековалентным , объединяя этим термином электростатнческие взаимодействия, дисперсионные силы, водородную связь и гидрофобные эффекты. Собственно электростатические силы делят на ионные (энергия их обратно пропорциональна первой степени расстояния), иоино-дииольные (энергия обратно пропорциональна четвертой степени расстояния) и дипольные, т.е. силы взаимодействия между постоянными диполями и постоянным диполем и индуцированным им диполем (в обоих случаях энергия обратно пропорциональна шестой степени расстояния). Так же изменяется с расстоянием и энергия притяжения, обусловленная дисперсионными (лондоновскими) силами, называемыми обычно ван-дер-ваальсовыми. Вклады дисперсионных взаимодействий в энергию связи невелики  [c.324]

    В качестве более сложного примера можно привести кинетику процесса так называемой афйнной модификации, нашедшей широкое применение в исследовании биологических высокомолекулярных соединений — белков и нуклеиновых кислот Библогическай активность этих полимеров часто обусловлена их способностью связывать системой нековалентных связей определенное низкомолекулярное соединение, которое в этом случае называют специфичным лигандом. Область биополимера, с которой связывается лиганд, называется активным центром. Конкретный пример структуры активного центра приведен в гл. VI при рассмотрении катализа ферментами (см. рис. 87).  [c.287]

    Как уже упоминалось, ковалентная посадка НК на матрицу может оказаться непригодной для создания аффинного сорбента с индивидуальной специфичностью, поскольку многие основания полинуклеотидной цепи будут заблокированы химической связью с носителем. По этой причине широкой популярностью пользуются различные методы нековалентной фиксации НК на матрицах. Исторически они были разработаны значительно раньше, но до сих пор не утратили своего значения. Простейший из этих методов использовал протяженность и гибкость нитей высокомолекулярных денатурированных ДНК, которые просто заплавляли в 4%-ный агар при температуре выше 90° [Bendi h, Bolton, 1968]. Около половины внесенных в расплавленный агар молекул ДНК после его затвердевания оказываются столь надежно запутанными в сеть геля, что не выходят цз него да ке после длительной промывки. Агар затем нарезали ку- [c.391]

    Однако значительно большие возможности открывает нековалентное связывание НК с матрицей целлюлозы. Во-первых, его удается осуществить и для относительно малых фрагментов НК, а во-вторых, с целлюлозой можно связать и нативную двунитевую ДНК. Способы такого связыпания исиользуют неспецифическую сорбцию, вернее, запутывание нитей НК в сетке целлюлозы. Здесь ото происходит успешнее, чем в агарозе, у которой пустоты крупнее, а инти собраны в плотные жгуты. Во многих сл учаях связь оказывается достаточно прочной, чтобы обеспечить надежное задержание НК в колонке аффинного сорбента в условиях многократных промывок, связывания и элюции очищаемых макромолекул. [c.392]


Смотреть страницы где упоминается термин Связь нековалентная: [c.105]    [c.84]    [c.212]    [c.108]    [c.204]    [c.119]    [c.144]    [c.147]    [c.13]    [c.151]    [c.218]    [c.45]   
Биологическая химия Изд.3 (1998) -- [ c.51 , c.52 , c.60 , c.88 , c.89 , c.120 , c.127 ]




ПОИСК







© 2024 chem21.info Реклама на сайте