Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фермент-субстратные комплексы ассоциация

    Сольвофобные взаимодействия играют важную роль в ассоциации полиметиновых красителей [81] ив стабилизации определенных конформаций полипептидов и белков в водных растворах [222, 223]. Они участвуют и в образовании фермент-субстратных комплексов [77, 78, 83, 84]. [c.54]

    Перечислите основные исторические этапы изучения лиганд-рецепторного взаимодействия. 2. Дайте определение понятиям рецептор , лиганд , аффинность . 3. С помощью схемы опишите лиганд-рецепторное взаимодействие. 4. Получите уравнение, связывающее концентрацию ли-ганд-рецепторных комплексов с временем реакции лиганд-рецептор . 5. Какими уравнениями описываются процессы ассоциации и диссоциации лиганд-рецепторных комплексов Почему 6. Какова раз.мерность констант скоростей ассоциации и диссоциации, равновесной константы диссоциации Каковы наиболее часто встречаемые значения этих констант 7. Как можно определить константу скорости ассоциации и диссоциации 8. Как можно определить концентрацию рецепторов и их аффинность 9. Выведите уравнение Скэтчарда. 10. Каковы современные представления о структуре и функции рецепторов 11. Что такое принцип структурной комплиментарности 12. Сравните фермент-субстратное и лиганд-рецепторное взаимодействие. 13. Можно ли определить концентрацию рецепторов и их аффинность исходя из кинетических исследований 14. Всегда ли совпадают величины констант диссоциации, вычисленные по тангенсу угла наклона в координатах Скэтчарда и вычисленные как отношение констант скоростей диссоциации и ассоциации 15. Какие типы рецепторов вы знаете По какому принципу называются рецепторы 16. Дайте определение понятиям агонист и антагонист . [c.354]


    Например, этим соединением может быть фермент-субстратный комплекс тогда К соответствует константе ассоциации для реакции образования комплекса (Кз ). [c.200]

    В основе теоретических рассуждений Хироми в работах [6—10] лежит постулат, что активный центр деполимераз состоит из нескольких сайтов, каждый из которых в фермент-субстратном комплексе взаимодействует с мономерным звеном полимерного субстрата (например, в случае деградации амилозы под действием амилаз — с глюкозпыми звеньями). Сродство сайта i к мономерному звену можно охарактеризовать микроскопической константой Ai, представляющей собой соответствующую константу ассоциации. Переходя от микроскопических констант к макроскопическим , примерами последних являются экспериментально определяемая константа ассоциации субстрата в целом с активным центром фермента К и стандартная свободная энергия комплексообразования субстрата с ферментом AG°, связанные следующим соотношением  [c.40]

    Некоторые позиционные изомеры связаны продуктивно (в том случае, когда какая-либо из потенциально расщепляемых связей в молекуле суктрата попадает в каталитический участок активного центра), тругие —непродуктивно (см. рис. 4). Обозначая константу ассоциации дл образования продуктивного фермент-субстратного комплекса Кп.у и непродуктивного — получим [c.42]

    Сопоставляя па данном этапе рассмотрения концепции Хироми и Тома, мы видим, что отнесение константы Михаэлиса к соответствующим микроскопическим параметрам в рамках обеих концепций идентично (сравните выражения 14 и 15, с одной стороны, и 43 — с другой). Однако смысл каталитической константы в обеих концепциях различается (см. выражения 17 и 44). Если по гипотезе Хироми каталитическая копстапта пропорциональна гидролитическому коэффициенту ко, который является строго характеристическим для данного фермента, и определяется исключительно соотношением констант ассоциации субстрата в продуктивном и непродуктивном фермент-субстратном комплексах (17), то по гипотезе Тома величина гидролитического коэффициента зависит от способа связывания фермента с субстратом и от степени полимеризации последнего. На наш взгляд, это придает настолько больн1ую гибкость расчетам на основании концепции Тома, в особенности с помощью машинного анализа, что может в отдельных случаях делать бессмысленными определения показателей сродства индивидуальных сайтов активного центра. фермента, поскольку все наблюдаемые кинетические эффекты могут быть объяснены в рамках вариации гидролитического коэффициента при изменении структуры олигомерного субстрата и способов его связывания с ферментом. То же можно отнести и к определению константы скорости второго порядка ферментативного расщепления субстрата (см. выражения 18 и 45). [c.65]


    Макроскопическая константа Михаэлиса (точнее соответствующая ей константа ассоциации) для гидролиза л-мера, Кт,п, равна сумме микроскопических констант ассоциации субстрата с активным центром фермента (строго это выполняется в том случае, когда химическое превращение фермент-субстратного комплекса происходит намного медленнее, чем его диссоциация на исходные фермент и субстрат, 2,л,п<Сй 1,г,я, см. схему 80)  [c.108]

    Изложенные выше сведения позволяют отметить следущие важные характеристики фермент-субстратных взаимодействий а) связывание фермента с субстратом во многих случаях происходит ступенчато, причем за быстрой диффузионно-контролируемой стадией ассоциации следует более медленная стадия "подстройки" ре агирующих веществ б) в продуктивном фермент-субстратном комплексе возможно искажение структуры планарной амидной связи, претерпевающей гидролиз, так что она становится неплоской ("пирамида лизация") в) образование комплекса. [c.302]

    Д. Миозиновая АТРаза определение констант скорости ассоциации и диссоциации фермент-субстратного комплекса, исследование промежуточных конформационных состояний и равновесий методом остановленной струи с регистрацией флуоресценции, методом высвобождения протонов, измерением ферментативной активности при помощи вспомогательных ферментных систем, методом светорассеяния и методом замороженной струи [c.238]

    Другими словами, существуют две концепции, с противоположных (на первый взгляд) позиций объясняющие субстратную специфичность лизоцима (в отношении длины цепи олигосахаридных субстратов). Согласно первой концепции, при переходе от длинных олигосахаридов к коротким непропорционально возрастает константа ассоциации последних с ферментом за счет резкого увеличения степени непродуктивного (геометрически неправильного) связывания. В итоге константы ассоциации длинных и коротких олигосахаридов с ферментом оказываются одинаковыми Кт = = 10" М от тримера до гексамера, см. табл. 38), по эффективность каталитической деградации коротких олигосахаридов мала. Согласно второй концепции, ири переходе от коротких олнгоса-харидов к длинным последние пс реализуют потенциальные воз-можр[ости фермент-субстратных взаимодействий п комплексе Михаэлиса (что и приводит к их относнтельпо малым величинам констант ассоциации с активным центром), но полностью реализуют взаимодействия в переходном состоянии ферментативной реакции. Чем выше степень полимеризации субстрата (в пределах активного центра фермента), тем бoльнJe он резервирует возможностей для уменьшения свободной энергии переходного состояния реакции за счет дополнительных взаимодействий (по сравнению с взаимодействиями в комплексе Михаэлиса) и тем выше скорость ферментативного гидролиза. [c.196]


Смотреть страницы где упоминается термин Фермент-субстратные комплексы ассоциация: [c.303]    [c.89]   
Структура и механизм действия ферментов (1980) -- [ c.159 , c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация



© 2025 chem21.info Реклама на сайте