Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь коэффициента активности и активности с другими термодинамическими свойствами растворов

    Коэффициенты активности связаны с парциальными молярными характа ристиками растворенного вещества и растворителя фундаментальными термодинамическими соотношениями. Некоторые из этих соотношений имеют большое практическое значение, так как лежат в основе различных методов определения парциальных молярных величин и других термодинамических свойств раствора. Важное значение имеет, например, температурная производная коэффициента активности. Чтобы получить это соотношение, заменим / 2 в (131.1) на Ог по (121.10)  [c.378]


    Следствие первого закона Коновалова (иногда это положение называют третьим законом Коновалова) утверждает симбатность в изменениях состава раствора и пара в бинарных системах. Следовательно, в бинарных системах кривые Ух = I (х ) не могут иметь экстремумов. Определенную информацию могут дать сопоставления характеристик фазового равновесия с другими термодинамическими свойствами системы, которые определяют в независимом эксперименте. Так, законы (правила) Вревского позволяют связать направление изменений состава пара при изменении температуры и давления и направление смещения состава азеотропной смеси с величинами теплот испарения компонентов. Для оценки согласованности данных разного характера могут служить уравнения, которые связывают температурную зависимость давления пара с теплотами испарения веществ, температурную зависимость коэффициентов активности с теплотами смешения н т. п. [c.125]

    Связь коэффициента активности и активности с другими термодинамическими свойствами раствора [c.378]

    Значения коэффициентов активности компонентов бинарных систем определяются характером и интенсивностью межмолекулярного взаимодействия в смесях. В связи со сложным строением многих веществ, особенно органических, характер взаимодействия молекул в растворах может быть чрезвычайно сложным. Это обусловливает возможность различной, часто весьма сложной зависимости термодинамических функций растворов от их состава. Однако во всех случаях различные свойства растворов оказываются взаимосвязанными и пе могут изменяться произвольно. Эта взаимосвязь определяется и математически формулируется уравнением состояния. Применяя к раствору уравнение состояния (1-197), выраженное с помощью коэффициентов активности, нетрудно заключить, что коэффициенты активности компонентов не могут изменяться независимо друг от друга. Как и все величины, характеризующие термодинамические свойства смесей, коэффициенты активности зависят не только от состава смесей, но также от температуры и давления. Влияние температуры тем больше, чем больше теплота смешения компонентов, а давления — чем больше сжимаемость смесей. Для смесей, находящихся в конденсированном состояний, достаточно удаленном от критической точки, влиянием давления на коэффициенты активности компонентов в большинстве случаев можно пренебречь. Влияние температуры при ее изменении в небольших пределах сравнительно мало. При таких условиях наибольшее влияние на значения коэффициентов активности компонентов оказывает изменение состава смесей. В следующем параграфе подробно обсуждается влияние температуры и давления на коэффициенты активности компонентов. Поскольку при указанных выше условиях влияние этих параметров состояния мало, для установления качественных закономерностей можно их не учитывать. При этом связь величин 71 и уз с составом смеси выражается для бинарной системы уравнением Гиббса — Дюгема  [c.139]


    Активность, коэффициент активности и осмотический коэффициент являются вспомогательными функциями, используемыми, как будет показано далее ), в целях упрощения выводов термодинамической теории растворов. Все эти функции тесно связаны с изменением химического потенциала Д[1. = [Xj — fi — фундаментальной термодинамической величины, знание которой открывает возможность вычисления свободной энтальпии, а следовательно, и других термодинамических свойств системы. [c.45]

    На основе методов, применяемых в теории строго регулярных растворов, в нашей лаборатории были получены выводы, позволившие объяснить ряд важных закономерностей, относящихся к растворимости твердых веществ в жидкостях. В частности, была установлена и теоретически обоснована связь между растворимостью и параметрами, характеризующими свойства молекул компонентов раствора [13]. Были установлены закономерности, связывающие растворимость с другими термодинамическими свойствами растворов и получены уравнения для коэффициентов активности компонентов раствора, в явной форме связанные с молекулярными силами, и не только для тех случаев, когда компоненты раствора неполярны, но и для тех, когда они содержат полярные молекулы. Согласно опубликованным нами выводам, изменение свободной энергии раствора, обусловленное дипольным взаимодействием молекул компонентов может быть выражено следующим образом [13]. [c.39]

    Термодинамические свойства систем MXj+KX слишком отличаются от термодинамических свойств идеальных и регулярных растворов. Небольшие числовые значения коэффициентов активностей компонентов растворов указывают на то, что эти компоненты частично связаны в растворе в виде комплексных ионов. С этим согласуются данные, полученные другими методами, например данные об электропроводности, криоскопии, мольных объемах, спектрах комбинационного рассеяния. Термодинамические свойства систем MXj—RbX и MXj— sX еще больше отличаются от свойств идеальных растворов. Это можно объяснить повышением устойчивости комплексных ионов с уменьшением плотности заряда, или ионного потенциала, катиона щелочного металла. [c.360]

    Активность растворителя и растворенного вещества в растворах нелетучих веществ. Из предыдущего видно, что термодинамические свойства предельно разбавленных и идеальных растворов определяются только концентрацией. Но в реальн х растворах свойства зависят также и от природы компонентов, от характера и интенсивности межмолекулярного взаимодействия в растворе. Результат этого взаимодействия формально равнозначен некоторому изменению концентрации веществ, что приводит к несовпадению свойств, рассчитанных по уравнениям Генри, Вант-Гоффа, Рауля, с фактически наблюдаемыми, Использование термодинамической активности вместо концентрации позволяет объединить все отклонения от идеального поведения и связать разные свойства растворов друг с другом на базе уравнений для идеальных и предельно разбавленных растворов. Но в таком случае важнейшей задачей термодинамики реальных растворов становится вычисление активности или коэффициента активности. Так как теоретические расчеты активности возможны не всегда, то [c.210]


Смотреть страницы где упоминается термин Связь коэффициента активности и активности с другими термодинамическими свойствами растворов: [c.471]    [c.471]    [c.123]    [c.330]    [c.87]   
Смотреть главы в:

Физическая химия -> Связь коэффициента активности и активности с другими термодинамическими свойствами растворов

Физическая химия -> Связь коэффициента активности и активности с другими термодинамическими свойствами растворов




ПОИСК





Смотрите так же термины и статьи:

Активность раствора

Активность свойства

Активные в растворах

Другие свойства

Коэффициент растворов

Растворов свойства

Связь с другими свойствами

Термодинамические свойства

Термодинамические свойства растворов



© 2025 chem21.info Реклама на сайте