Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамическая активность

    Активностью (точнее — термодинамической активностью) данного компонента называется такая величина, которая связана с другими термодинамическими величинами, так же как в идеальных растворах с ними связана концентрация этого компонента Активность данного компонента зависит от состава раствора (точнее— от концентраций каждого из компонентов), а также от температуры и давления. К таким свойствам принадлежат изобарный потенциал, парциальные давления насыщенного пара, температура замерзания, температура кипения, константа равновесия химической реакции и др. Для выражения соотношений между активностью и этими свойствами в любом растворе или газовой смеси достаточно подставить величину активности вместо концентрации в соотношения, выражаюш,ие зависимость этих свойств от концентрации в простейших (идеальных) растворах. [c.313]


    На основании результатов изучения обратимых процессов (см. стр. 62) следует, что под активной массой нужно понимать термодинамическую активность. Однако, как уже отмечалось в предыдущем разделе, при рассмотрении ионных реакций необходимы дальнейшие модификации основного закона. Более того, оказалось невозможным подтвердить экспериментально идентичность термодинамической и кинетической активностей, даже исключая случай ионных реакций. [c.22]

    Выражения (83.6) и (83.7) являются определением термодинамической активности (относительной активности). Наряду с относительной активностью в термодинамике используется и абсолютная активность. Абсолютная активность г-го вещества в смеси Хг есть число (безразмерная величина), определяемое по формуле [c.272]

    Нормальный электродный потенциал ср" позволяет оценивать термодинамическую активность различных химических веществ, но в настоящее время нет методов, позволяющих измерять абсолютное значение его. В связи с этим электроды характеризуют так называемым стандартным потенциалом электрода, который представляет собой (по предложению Нернста) разность нормальных потенциалов рассматриваемого и стандартного водородного электродов, определенных при 25 °С (298 К). При таком подходе стандартный электродный потенциал водорода фн, условно принимают равным нулю. Тогда стандартный потенциал вещества, электродный потенциал которого в указанных условиях, более отрицателен, чем потенциал стандартного водородного электрода, считается отрицательным. Если же электродный потенциал вещества менее отрицателен, чем потенциал стандартного водородного электрода, стандартный потенциал вещества считается положительным. Значения стандартных потенциалов некоторых веществ приведены в [2, табл. 79]. [c.237]

    Глава VI ТЕРМОДИНАМИЧЕСКАЯ АКТИВНОСТЬ [c.108]

    Здесь Ке—константа равновесия, выраженная через концентрации, а индекс е обозначает равновесные условия. В неидеальных системах константу равновесия Кс выражают через активности. Таким образом, оказывается, что термодинамическая активность соответствует действующим массам в уравнении закона действия масс (см. стр. 22), но следует обратить внимание на приведенное выше определение. [c.63]

    Константы скорости, так же как и равновесия (если последние представляют собой константы стехиометрического равновесия, выраженные через концентрации, а не через термодинамические активности), до некоторой степени все же зависят от состава раствора. В частности, когда в реакции участвуют ионы, значительное влияние на величины констант оказывает присутствие электролитов. Например, константы скорости и равновесия для реакции СО2 с гидроксил-ионом сильно зависят от состава раствора, причем соли натрия и калия обладают неодинаковым эффектом при одной и той же концентрации (см. главу X). Таким образом, наблюдается зависимость как от состава, так и от ионной силы раствора. Однако в первом приближении при отсутствии других сведений можно принимать, что константы скорости и равновесия остаются одними и теми же в растворах одной и той же ионной силы /, где [c.40]


    Ошибочно полагать, что в случае неидеальности растворов замена в кинетическом уравнении концентраций термодинамическими активностями обеспечивает независимость константы скорости реакции от составу раствора. Такое предположение ошибочно в принципе, а на практике, как показал Белл использование концентраций, а не активностей обычно оказывается более правильным. [c.40]

    Что представляет собой термодинамическая активность вещества Как связаны между собой активность и парциальное давление идеального газа  [c.85]

    Характеристики набухания аналогичны характеристикам сорбции. Основной из них является изотерма набухания, которая показывает зависимость степени набухания от термодинамической активности растворителя (от давления его пара) при данной температуре. Типичные изотермы набухания представлены на рис. VI. 9. Как видно, с ростом давления пара растворителя степень набухания увеличивается. Если набухание переходит затем в растворение (неограниченное набухание), то изотерма поднимается [c.312]

    Замечено, что чем более отрицателен стандартный электродный потенциал металла, тем выше его термодинамическая активность (реакционная способность) в соответствующей среде. Так, наибольшей реакционной способностью обладает литий — он возглавляет ряд напряжений. А самая малая реакционная способность из приведенных в [2, табл. 79] металлов у плутония —он замыкает ряд напряжений. [c.237]

    Как будет показано, всем перечисленным требованиям удовлетворяет термодинамическая активность а. Так как все термодинамические свойства компонентов раствора выражаются через химический потенциал, то целесообразно в случае реальных растворов сохранить для этой величины такое же определение, как и для идеальных. Напомним соответствующие соотношения для совершенных и разбавленных растворов  [c.109]

    Недостатки второго пути сводятся к тому, что он не основан на учете механизма явления и поэтому непосредственно не вскрывает причин отклонений в поведении реальных растворов от идеальности. Вместе с тем серьезное преимущество этого пути в точном описании явления, свободном от каких-либо допущений. Разумеется, эти два пути не являются взаимоисключающими, а должны дополнять друг друга. Целью теории термодинамической активности, как это уже отмечалось в гл. VI, является определение соотношений, позволяющих из результатов одного опыта предсказать результаты других опытов. Такие соотношения содержат в себе и учет отклонения от идеальности и поэтому могут быть использованы для предсказания тех или иных свойств, которые без этого должны были бы определяться опытным путем. [c.163]

    Мы рассматривали до сих пор диффузию в идеальных растворах. Было предложено несколько путей описания диффузии в реальных растворах. Без особого основания в уравнении П = —08 х X дС дх) мы концентрацию заменяли термодинамической активностью. [c.272]

    Равновесия при реакциях с участием реальных растворов не описываются законом действующих масс. Константа равновесия, выражаемая через концентрации, не является постоянной величиной. Это обусловлено сложным характером взаимодействия между частицами различных компонентов, вследствие которого концентрация не определяет однозначно химический потенциал компонента, как в совершенных или разбавленных растворах. В связи с этим была введена новая функция — термодинамическая активность а, которая определяется опытным путем. Подстановка а вместо концентрации в константу равновесия делает з.д.м. справедливым для реальных растворов. Заменив концентрацию компонента Сг на активность щ, можно выразить химический потенциал уравнением [c.71]

    Реальные растворы не подчиняются закону Рауля, а пар над реальным раствором не подчиняется уравнению состояния идеального газа (вместо мольных долей в расчетах с реальными растворами используются термодинамические активности ai). Активность рассматриваемого вещества в растворе равна отношению давления пара данного компонента pt над раствором к давлению насыщенного пара над чистым веществом при той же температуре рЛ [c.178]

    В реальных растворах соотношение р/р/.о не равно молярной доли жидкого компонента. Оно количественно отражает положительные или отрицательные отклонения от закона Рауля и называется термодинамической активностью компонента а,. Таким образом, если пар над раствором можно считать смесью идеальных газов, активность компонента в растворе будет а, = р,/р,,о. Если пар нельзя считать идеальным газом, то давления надо заменить соответственно фугитивностями н тогда ai = fi/fi°. [c.175]

    Конечно, шкалу pH для неводной среды нельзя сравнивать со шкалой pH для водной среды, но это не так важно. Самые большие трудности возникают из-за того, что для неводной среды не удается так удачно связать pH с термодинамической активностью иона водорода, как для водной. В особенности это очевидно для растворителей с малой диэлектрической проницаемостью, в которых проявляется ассоциация ионов. Но, если считают, что величина pH для водных систем не имеет термодинамического смысла, то нет основания ожидать, что для неводной среды будет иначе. [c.379]


    Иногда, особенно при рассмотрении равновесий с участием конденсированных фаз, вместо летучести используется термодинамическая активность а, величина, равная отношению а = /// летучести / в данном состоянии к летучести f° в стандартном состоянии при одной и той же температуре. В этом случае [c.153]

    Тождество (III.2) служит определением величин щ — термодинамической активности к — коэффициента активности, который в общем случае является неизвестной функцией от состава раствора, температуры и общего давления. Термодинамическая активность и коэффициент активности не относятся к непосредственно определяемым величинам, однако в термодинамике растворов разработаны методы их вычисления из опытных данных. Это делает возможным практическое применение уравнения (П1.2) для описания произвольных растворов. [c.84]

    Например, повышается растворимость твердых веществ в жидкостях. Образование новых поверхностей при дроблении, приводящее к повышению энергии вещества, как в вышеприведенном примере с поваренной солью, увеличивает его термодинамическую активность следовательно, равновесный с ним насы- [c.255]

    Таким образом, термодинамическая активность промежуточного химического взаимодействия реагирующих веществ с катализатором не определяет однозначно возможности проявления данным веществом высокой каталитической активности. Чтобы промежуточное взаимодействие происходило быстро, с низкой энергией активации, необходимо учитывать влияние кинетических факторов. Способность данного вещества вступать в ту или иную реакцик> в заданных условиях может быть охарактеризована термодинамическими и кинетическими параметрами этих реакций. Термодинамически эта способность определяется тем, что без затраты работы извне система может переходить только из менее устойчивого состояния в более устойчивое. Возможность такого перехода определяется уменьшением термодинамического потенциала или свободной энергии системы  [c.26]

    Химическое взаимодействие в полифазных системах стремится к состоянию равновесия. Равновесная реакция будет приводить в результате к изменению состава каждой фазы, а возможно и к изменению структуры твердой фазы. В результате установления равновесия начальный состав твердого катализатора будет модифицирован. Такая равновесная реакция происходит одновременно с общей каталитической реакцией. Если скорость равновесной реакции мала по отношению к скорости каталитической реакции, равновесие твердое тело —газ или твердое тело — жидкость не устанавливается, и химический потенциал реакционноспособной поверхности не зависит от природы и термодинамической активности частиц окружающей фазы. Тогда каталитическая активность поверхности определяется главным образом методом приготовления катализатора. Если [c.142]

    Понятие о термодинамической активности электролите  [c.159]

    Кинетика процесса иногда зависит от природы растворителя. В некоторых случаях данный эффект обусловлен влиянием растворителя на термодинамическую активность реагентов. Сольва-тнрующая способность и диэлектрическая константа являются весьма существенными свойствами веществ. [c.83]

    Сравнение уравнений для химического потенциала компонентов реального раствора (VI, 3) [>. = ° T)+RT 1пр /Р](пар—идеальный газ) и (VI, За) (Г)+7 Г1п/ //1 (пар-реальный газ) с уравнением для химического потенциала компонента в идеальном растворе (VI, 13) ц,.= д°(7 )+/ Т1пл показывает, что отношение (или / ]) играет такую же роль в уравнениях для реального раствора, что мольная доля компонента л ,—в уравнениях для идеального раствора. Это отношение называется термодинамической активностью компонента раствора (или, сокращенно, активностью компонента) н обозначается через О . Таким образом, в том случае, когда пар—идеальный газ  [c.207]

    Химическое строение ионита определяет его силу как кисяхшс или основания, т. е. термодинамическую активность соответствую щих противоионов, что в свою очередь определяет каталитическую активность ионита. [c.39]

    При описании систем с ТБФ вместо концентраций использовались его термодинамические активности в тройной системе НаО—СвНб—ТБФ, найденные в [8]. [c.68]

    Характерным свойством понптов является набухаемость при контакте сухого ионита с раствором. Особенно сильно набухают синтетическпе ионообменные смолы. Основной причиной набухания ионитов в воде является наличие гидрофильных функциональных групп. Умеренное набухание ионитов является положительным фактором, способствующим функционированию ноногенных групп, находящихся внутри зерна ионита. Количественной характеристикой набухания является степень набухания ионитов. Степень набухания определяется отношением разности объемов набухшего и сухого ионита к массе сухого ионита. Набуханию препятствуют силы упругости трехмерной структурной сетки (матрицы), которые растут с увеличением степени сшивки полимера (т. е. с увеличением количества вводимого при синтезе мостикообразователя). Набуханию способствуют большая обменная емкость, гидратация противоионов и разбавление раствора (увеличение термодинамической активности растворителя). Неорганические иониты набухают очень слабо и удерживают растворитель в полостях кристаллической структуры. [c.169]

    Разумеется, при помощи такого метода невозможно абсолютное предсказание свойств растворов, а возможно лишь относительное предсказание некоторых свойств, если какое-лггбо одно из них известно из опыта. Например, если известно даг.лепие пара над растворами как функция состава, то можно вычислить такие характеристики, как распределение компонентов между фа лми, растворимость, равновесие при химических реакциях и г. д. В качестве функции, связывающей свойства растворов друг с другом, Льюисом была предложена новая величина — термодинамическая активность. [c.109]

    При антагонизме действия электролитов сумма + — оказывается больше, чем в случае аддитивности. Иногда он проявляется в такой мере, что в коагулирующей смеси содержание каждого электролита может значительно превышать его собственную пороговую концентрацию. Антагонизм объясняется изменением термодинамической активности ионов при смешении электролитов, взаимодействием между ними с образованием комплексных ионов и адсорбционными эффектами. Антагонизм наблюдается при коагуляции золей AgI смесями А1(ЫОз)з и К2504 ТИ(ЫОз)4 и ЫааЗО . [c.117]

    Активность растворителя и растворениого вещества в растворах нелетучих веществ. Из предыдущего видно, что термодинамические свойства предельно разбавленных и идеальных растворов определяются только концентрацией. Но в реальных растворах свойства зависят также и от природы компонентов, от характера и интенсивности межмолекулярного взаимодействия в растворе. Результат этого взаимодействия формально равнозначен некоторому изменению концентрации веществ, что приводит к несовпадению свойств, рассчитанных по уравнениям Генри, Вант-Гоффа, Рауля, с фактически наблюдаемыми. Использование термодинамической активности вместо концентрации позволяет объединить все отклонения от идеального поведения и связать разные свойства растворов друг с другом на базе уравнений для идеальных и предельно разбавленных растворов. Но в таком случае важнейшей задачей термодинамики реальных растворов становится вычисление активности или коэффициента активности. Так как теоретические расчеты активности возможны не всегда, то [c.210]


Смотреть страницы где упоминается термин Термодинамическая активность: [c.84]    [c.29]    [c.59]    [c.59]    [c.272]    [c.38]    [c.84]    [c.389]    [c.272]    [c.143]    [c.176]    [c.71]   
Смотреть главы в:

Физическая химия -> Термодинамическая активность

Краткий курс физической химии -> Термодинамическая активность

Физическая химия -> Термодинамическая активность

Основы электрохимии -> Термодинамическая активность

Строение расплавленных солей -> Термодинамическая активность

Теоретическая электрохимия -> Термодинамическая активность

Теоретическая электрохимия Издание 3 -> Термодинамическая активность

Теоретическая электрохимия Издание 4 -> Термодинамическая активность


Организация исследований в химической промышленности (1974) -- [ c.125 ]




ПОИСК







© 2024 chem21.info Реклама на сайте