Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический потенциал изменение

    Скорость, с которой меняется свободная энергия при изменении концентрации отдельного вещества, называется химическим потенциалом системы, и Гиббсу удалось показать, что именно химический потенциал является движущей силой химических реакций. Химическая реакция идет самопроизвольно от точки с высоким химическим потенциалом к точке с низким химическим потенциалом, подобно тому как теплота самопроизвольно передается от точки с высокой температурой к точке с низкой температурой. [c.113]


    Так как химический потенциал компонента в различных фазах равновесной системы имеет одну и ту же величину, то в уравнениях (V, 30), (V, 30а) и (V, 31) летучести относятся к компонентам в любой фазе системы, а числа молей и мольные доли—к какой-либо одной из фаз. Если имеется равновесие бинарного жидкого (или твердого) раствора с его насыщенным паром, а последний—идеальный раствор идеальных газов, то в уравнении (V, 31а) можно мольные доли х и отнести к газовой фазе или к жидко-му раствору. В первом случае уравнение (V, 31а) приводится к особой форме уравнения Дальтона (в чем легко убедиться) и может быть использовано как таковое. Во втором случае, определив изменения парциальных давлений компонентов жидкого раствора с изменением его состава, можно найти изменение химических потенциалов компонентов жидкого раствора с его составом. Знание зависимости 1пД-(1пр,.) или l от состава раствора дает возможность вычислять многие термодинамические свойства раствора при данной температуре, а изучение тех же величин при различных температурах приводит к расчету теплот образования раствора. [c.182]

    Из сопоставления уравнений (38) и (39) следует, что химический потенциал компонента в смеси эквивалентен изменению величины свободной энергии бесконечно большой системы при введении в систему одной грам-молекулы компонента. [c.95]

Рис. 44. Изменение химического потенциала окислителя в компактной окалине (а) и при образовании в компактной окалине микрополости 6) Рис. 44. <a href="/info/939138">Изменение химического потенциала</a> окислителя в компактной окалине (а) и при образовании в компактной окалине микрополости 6)
    Таким образом, феноменологический коэффициент Ь, определенный как Ь = с/ Ма/т), оказывается зависимым от процессов накопления вещества растворителя в слое сополимера еще и потому, что коэффициент является функцией концентрации через макроскопическую вязкость среды т]1. С другой стороны, для выражения динамики изменения химического потенциала растворителя в слое сополимера, следуя аналитическим свойствам диаграмм, можно записать [c.303]

    Химический потенциал компонента поэтому можно определить как изменение энергии системы (внутренней, Гельмгольца, Гиббса), вызванное изменением массы этого компонента на единицу при неизменных массах остальных компонентов и оп- [c.22]


    Изменение химического потенциала в газофазных реакциях. Условия равновесия [c.243]

    Существенно важно при этом отметить, что потенциал [1 не связан соотношениями типа (1.62), что упрощает доказательство. Подстановка (1.86) в первое уравнение системы (1.58) позволяет получить запись первого закона термодинамики (1.25) для изменения массы вещества через атомарный химический потенциал  [c.45]

    Выше указывалось, что возможность изменения состояния равновесия имеет важное значение для инженера-практика. Изложение условий состояния равновесия было дано без сведений о том, какие интенсивные характерные для равновесия величины состояния следует изменять, чтобы передвинуть равновесие. Кроме того, важно знать, в какую сторону сдвинется равновесие, если какую-либо величину состояния равновесной системы изменить определенным образом. Ответ на этот вопрос дает принцип Ле Шателье — Брауна, известный из термодинамики Если в термодинамической системе, находящейся в состоянии стабильного равновесия, изменить какую-либо интенсивную величину состояния, то равновесие при этом передвинется таким образом, чтобы изменение соответствующих сопряженных экстенсивных величин состояния было по возможности наименьшим . Вывод этого правила можно найти в учебниках по термодинамике, и мы ограничимся только описанием конкретных случаев. С нашей точки-зрения, большую роль играют интенсивные переменные состояния — такие как температура, давление и химический потенциал. Рассмотрим, какое передвижение равновесия числа пробегов реакции будет происходить при изменении этих величин, т. е. какой знак будет перед частными производными [c.140]

    Изменение химического потенциала при смешении и коэффициенты активности компонентов атермальных растворов определяются только энтропийным членом, ибо Q=lxi (Н —И )=0. Таким образом, из уравнения (УП, 45) следует  [c.253]

    Последнее уравнение трактует минимальную работу полного разделения как разность изобарно-изотермических потенциалов смеси и продуктов разделения. Эта величина отрицательна,что соответствует затратам работы извне. Уравнения (7.7) —(7.9) для практических расчетов целесообразно преобразовать, используя известные соотношения для изменения энтропии в изотермическом процессе и уравнения для химического потенциала (2.2) и (3.2). Тогда получим для смеси идеальных газов [c.232]

    Для выяснения количественной связи между этими тремя коэффициентами обратим внимание на то, что изменение химического потенциала моля компонента при переходе его из некоторого состояния, обозначаемого индексом, в другое состояние (без индекса) не может зависеть от выбора единицы концентрации компонента в растворе и системы расчета активностей  [c.212]

    Растворитель и раствор, разделенные полупроницаемой перегородкой и находящиеся в равновесии, представляют две фазы, один из компонентов которых, свободно проходящий из одной фазы в другую, должен иметь в обеих фазах равные химические потенциалы. В чистом растворителе его химический потенциал и при постоянных температуре и внешнем давлении постоянен. В растворе же его значение изменяется с изменением мольной доли и давления Pj (последнее складывается из первоначального [c.243]

    Учитывая, что согласно уравнению (V, 2ба) изменение химического потенциала пара (идеального газа), давление которого равно р, составляет [c.469]

    Таким образом, в общем случае, когда химический потенциал адсорбата при адсорбции изменяется, изменение свободной энергии системы больше изменения поверхностного натяжения. [c.480]

    Таким образом, дифференциальное изменение свободной энергии при адсорбции равно изменению химического потенциала адсор- [c.482]

    Химический потенциал, как известно, имеет смысл работы, необходимой для изменения состава смеси на 1 моль компонента при постоянных значениях Я и Г, парциальная энтальпия [c.236]

    Если при постоянной температуре изменилось парциальное давление компонента i идеальной газовой смеси от рц до pi2, то изменение химического потенциала [c.42]

    Если двухкомпонентный раствор образуется из щ молей первого компонента и молей второго, то изменение энергии Гиббса (химического потенциала) при образовании раствора будет выражаться равенством [c.353]

    Обсуждение результатов моделирования. Данные по расчету физико-механических характеристик процесса набухания проводятся для интервала времени от 10—15 до И 10 с. Верхний предел обусловлен временем установления термодинамического равновесия, нижний — скоростью изменения химического потенциала растворителя в системе. Теоретически значение химического потенциала растворителя в материале полимера в начальный момент времени = О равно ,=о = —оо. В этот момент времени парциальный мольный объем растворителя ю в системе бесконечно велик, так как напряжения, возникающие в грануле сополимера, всегда имеют конечную величину, т. е. IV =о = Эти условия при < О не могут быть воспроизведены на ЦВМ (ввиду ограниченности разрядной сетки машины). Поэтому необходимо задавать конечные и начальные значения химического потенциала растворителя в сополимере и его парциального мольного объема. [c.325]


    Решение. Изменение химического потенциала при растворении вычисляем по уравнению (ХП.9) / [c.172]

    Газовая фаза НзО — На, равновесная при 1873 К с раствором кислорода в железе (объемное содержание кислорода 0,1200%), со-деря ит 72,1 % Нг. Определите изменение химического потенциала кислорода при переходе из газовой фазы, в которой Ро, = 10 Па, в раствор указанного состава. Константа равновесия реакции На + + А = НаО при 1873 К [c.180]

    Определите изменение химического потенциала НаО ([л — [c.209]

    Понятие химического потенциала и его аналитические выражения применяются для изучения равновесия в химических и гетерогенных системах. При этом определяют изменение химических процессов в ходе протекания соответствующего физикохимического процесса и по знаку изменения химических потен циалов А х определяют, в какую сторону смещено равновесие в изучаемой системе — в сторону исходных веществ или продуктов реакции. [c.146]

    Для реакций, протекающих в растворах (жидких или твердых), в качестве параметра, измеряющего его свойства, используют активность. Изменение химического потенциала для реакций общего типа определится по разности химических потенциалов продуктов реакции и исходных веществ  [c.225]

    Получив с помощью уравнения (116) изотерму адсорбции, можно ее обработать рассмотренными в главах XVI, XVII и XIX способами и получить, например, методом БЭТ (см. сгр. 454) емкость плотного монослоя и величину удельной поверхности адсорбента, а также получить изменение химического потенциала исследуемого вещества при адсорбции, откуда можно вычислить зависимость коэффициента активности адсорбата от заполнения иоверхности. Из серии хроматограмм, определенных при разных температурах, можно получить соответствующую серию изотерм адсорбции и определить нз них зависимость дифференциальной теплоты адсорбции от заполнения поверхности, дифференциальные энтропии и другие термодинамические характеристики адсорбции при разных заполнениях. Результаты таких газо-хроматографических исследований при благоприятных условиях опыта близки к результатам статических методов. [c.592]

    Уравнение (124.1) применимо к идеальному раствору любой концентрации (в пределах, допускаемых растворимостью). Если = 1, то р, = ць т. е. в (124.1) является химическим потенциалом или энергией Гиббса чистого -го компонента. Изменение химического потенциала -го вещества А[д,г при образовании идеального раствора (при переходе моля вещества из состояния чистого вещества в состояние компонента идеального раствора) будет равно  [c.353]

    Как показывает уравнение (130.2), коэффициент активности характеризует работу или изменение химического потенциала при переходе компонента из идеального раствора в реальный при постоянных температуре, давлении и концентрации. В симметричной системе в стандартном состоянии компонент находится в чистом виде, поэтому Хд,, = 1 и = 1. Из (130.3) следует, что в стандартном состоянии коэффициент активности равен единице  [c.366]

    П. Б Р О Й е Р, А. А. Лопаткин (Московский государственный университет им. М. В. Ломоносова). При попытках дать статистическое описание адсорбционной системы возникают два вопроса 1) выбор модели и метода расчета и 2) задание потенциала взаимодействия. Первая задача являлась для нас основной. Выбор потенциала взаимодействия можно в данном случае рассматривать как вспомогательную задачу. Это обусловлено тем, что с помощью статистики рассчитываются такие сравнительно грубые характеристики адсорбционной системы (и притом для области их монотонного изменения), как средняя энергия адсорбированных молекул, их химический потенциал, изменение дифференциальной энтропии при переходе из газа в адсорбированное состояние и т. п. Все эти величины мало чувствительны к выбору потенциала взаимодействия и даже к выбору модели, на основе которой производится статистическое усреднение. Существенны лишь самые общие свойства потенциала отталкивание на близких расстояниях, притяжение на более далеких, глубина потенциальной ямы и т. п. Уже при помощи простых потенциалов, как, например, потенциал твердых сфер, можно получить удовлетвори-тельнзпо качественную картину при малых заполнениях поверхности. [c.90]

    При обратимом равновесном переходе изменение изобарного потенциала согласно (1.70) равно иулю и, следовательно, необходимым условием фазового равновесня является равенство значений химического потенциала каждого компонента в сосуществующих фазах  [c.32]

    Изменение химического потенциала какого-либо компонента в системе, подчиняющейся уравнению состояния идеальных газов нри постоянных давленнях и температуре, связано с изменением парциального давления следующим соотношением [c.159]

    Для расчета других термодинамических свойств адсорбционных систем достаточно знать изменения химического потенциала адсорбата при его переходе из стандартного состояния в газе (р°=1 атм) на поверхность при величине поверхностной концентрации а. Из уравнений (XVIII, 40) и (XVIII, 33) следует, что [c.511]

Рис. XVIII, 13. Зависимость теплоты адсорбции (С а) и изменения химического потенциала —Л х от заполнения поверхности при адсорбции аргона на графите Рис. XVIII, 13. <a href="/info/1333347">Зависимость теплоты адсорбции</a> (С а) и <a href="/info/939138">изменения химического потенциала</a> —Л х от <a href="/info/4503">заполнения поверхности</a> при <a href="/info/301041">адсорбции аргона</a> на графите
    В заключение отметим, что формирование слоев связанной воды вблизи поверхности силикатных частиц коллоидных размеров тесно связано с формированием коагуляционной сетки в дисперсии. Из работ [132—134] следует, что формирование гиксотропной структуры в дисперсиях монтмориллонита приводит к заметному увеличению так называемого всасывающего давления я — величины, которая измеряется с помощью тен-зиометров и характеризует способность почвы при соприкосновении с чистой водой впитывать ее в себя. По величине я легко определить изменение химического потенциала связанной воды граничного слоя по сравнению с объемной, а по зависимостям я от температуры — парциальные молярные энтальпии и энтропии связанной воды. Перемешивание дисперсий (разрушение тиксотропной структуры) приводило к резкому уменьшению значений я. Получаемые на их основе парциальные термодинамические функции связанной воды практически не отличались от таковых для объемной воды. Тиксотропное структу-рообразование, наоборот, вызывало повышение значений я, а термодинамические характеристики связанной в структурированной дисперсии воды были существенно иными, чем в объемной воде [133]. [c.44]

    Уравнение (1.59) дает строгое математическое определение химического потенциала как частной производной от некомпенсированной теплоты по числу молей некото poro i-ro компонента при постоянных значениях числа молей других компонентов и параметров состояния, соответствующих своему термодинамическому потенциалу. Физический смысл химического потенциала, однако, менее ясен, поскольку в закрытой системе изменение количества вещества в принципе не должно иметь места. [c.37]

    В. Расчет изменения энергии Гиббса можно выполнять дл превращения стехиометрических количеств компонентов по уравнению, справедливому для любых фаз Аб = А(угм.г ). Если, однако, реакция проводится в большой системе (концентрации компонентов при реагировании небольших количеств веществ практически не изменяются), и система находится в равновесии (бесконечно медленная реакция), то устанавливаетсж фазовое равновесие, при котором химический потенциал компонента в жидкой (ц ) и паровой ( хг) фазах одинаков = = 1 . Значит, изменение энергии Гиббса для превращения стехиометрических количеств веществ в жидкой (ДО ) и паровой (газовой) фазах (ДО) одинаково  [c.81]

    На основании общего давления и состава пара, находящегося в равно зёсии с кипящей жидкостью, приведенных на с. 214, определите актибиость и коэффициент активности в жидкой фазе компонента А при злданном составе жидкой фазы и заданной температуре. Рассчитайте по уравнению Клапейрона— Клаузиуса на основании спра- ючных данных давление насыщенного пара Р над компонентом А. Определите изменение химического потенциала при образовании раствора при заданной концентрации и температуре. [c.222]


Смотреть страницы где упоминается термин Химический потенциал изменение: [c.63]    [c.59]    [c.173]    [c.568]    [c.91]    [c.40]    [c.43]    [c.370]    [c.127]    [c.258]    [c.172]   
Адсорбция газов и паров на однородных поверхностях (1975) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал химическии

Потенциал химический

Химический потенция



© 2025 chem21.info Реклама на сайте