Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства молекул

    Магнитные свойства молекул. Характер распределения электронов по молекулярным орбиталям позволяет объяснить также магнитные свойства молекул. По магнитным свойствам различают парамагнитные и диамагнитные вещества (см. с. 155). П а р а м а г-н и т н ы м и являются вещества, у которых имеются непарные электроны, у диамагнитных веществ все электроны парные. [c.56]


    Сравнить кратности связей и магнитные свойства молекулы Вз и молекулярного иоиа Е 2.  [c.61]

    В области органической химии было предложено множество эмпирических формул, связывающих реакционную способность (химическую) и строение 12, 166]. Однако большинство из них позволяют дать лишь качественную оценку и приводят к очень плохому количественному совпадению. Правда, в последнее время в этом направлении был сделан ряд довольно успешных попыток, причем большинство из них такого же типа, как и соотношение Бренстеда — Педерсена для общего кислотно-основного катализа они дают линейную связь свойств молекул со свободной энергией. Подобно соотношению Бренстеда — Педерсена, они основаны на предположении, что, если данная молекула принимает участие в двух обратимых процессах, изменение строения одинаковым образом влияет па относительные изменения свободной энергии в обоих процессах. [c.524]

    Опишите электронное строение молекулы О2 на основе теории молекулярных орбиталей. Позволяет ли теория молекулярных орбиталей предсказать парамагнитные свойства молекулы О2 и согласуется ли это предсказание с возможными предсказаниями, основанными на рассмотрении льюисовых (валентных) структур О2 Для какой молекулы следует ожидать большей энергии связи, О2 или N07 [c.546]

    Дать характеристику молекулярного кислорода Ог, указав а) его химические свойства б) строение молекулы по методу МО в) магнитные свойства молекулы. С какими простыми веществами кислород непосредственно не взаимодействует  [c.224]

    Закон распределения, записанный в виде уравнения (HI, 38), называется законом Максвелла — Больцмана и является одним из основных законов статистической физики, С его помощью можно решать многие задачи физической химии. Сам Максвелл использовал этот закон для выяснения распределения молекул по скоростям (закон Максвелла), а Больцман — для нахождения распределения молекул по энергиям. Значение закона Максвелла — Больцмана заключается также в возможности вычисления различных статистических средних свойств молекул — скоростей, энергий и т. д. [c.96]

    А. С. Купера, было последовательно проводимое положение о взаимосвязи между химическим строением и свойствами молекул. Это сделало понятие о химическом строении важнейшим теоретическим элементом химии. Подробнее см. упомянутые выше книги Г. В. Быкова (примечания 1 и 2). [c.183]


    Направленность ковалентной связи. Свойства молекулы, ее способ[[ост[ вступать в химическое взаимодействие с другими молекулами (реакционная с п о с о б н о с т .) зависят не только от прочности химических связей в молекуле, ио в значительной [c.133]

    Такая теория должна связать макроскопические кинетические величины с новыми величинами, используемыми для описания молекул. Теория должна, следовательно, связать наши кинетические параметры с более фундаментальными величинами, а также некоторыми универсальными постоянными, такими, как скорость света с, постоянная Планка к шт. п. Хотя решение такой задачи в принципе возможно, но оно слишком трудно. Поэтому целесообразно выбрать менее полную систему молекулярных единиц, такую, чтобы она давала возможность связать макроскопические величины с важнейшими параметрами молекул. Иными словами, следует избрать некоторую целесообразную модель молекулы, достаточно простую для математического расчета и такую, чтобы ее свойства можно было связать с другими экспериментально определенными свойствами молекул. В следующей главе мы познакомимся с некоторыми из таких общепринятых моделей и рассмотрим математический аппарат для их описания. [c.106]

    А. С. Ахматов рассматривает формирование граничных смазочных слоев как одно из явлений кристаллизации. Граничные слои, по мнению А. С. Ахматова, представляют собой моно- или поликри-сталлические тела, возникающие за счет зародышевой функции первичного слоя. Смазочные материалы в очень тонких слоях под двусторонним влиянием поверхностей трущихся металлов обнаруживают исключительные антифрикционные свойства. Молекулы смазочных веществ в граничных слоях обеспечивают достаточно большую прочность на сжатие и легкость сдвигов в горизонтальном направлении. Этим и объясняются небольшие коэффициенты трения при скольжении смазанных поверхностей. Тонкие смазочные слои могут не только в значительной степени снижать силу трения, но и оказывать большое влияние на величину износа. Причем, как показали исследования П. А. Ребиндера. Б. В. Дерягина и др., во многих случаях смазка, достаточно интенсивно снижающая силу трения, может значительно увеличивать износ. [c.131]

    Физические свойства вещества зависят от рода, числа и последовательности расположения атомов, из которых состоит молекула, и, следовательно, от массы, объема и формы молекул, типа связей между атомами в молекуле, а также от характера и величины межмолекулярных сил. Иногда, в тех случаях, когда один или два из указанных факторов оказывают решающее влияние на интересующее нас свойство вещества, можно найти приближенные, не очень сложные зависимости между свойствами молекул и свойством вещества и на этой основе предварительно оценить значение требуемой физико-химической величины. [c.63]

    ГИИ орбиталей (рис. 26). Распределение электронов по молекулярным орбиталям позволяет объяснить многие свойства молекул . [c.49]

    Теория молекулярных орбиталей позволяет объяснить парамагнитные свойства молекулы О2, обнаруживая наличие в ней двух неспаренных электронов, тогда как теория Льюиса не в состоянии сделать этого. В льюисовой структуре О 2 нет неспаренных электронов [c.529]

    Свойства молекул элементов 2-го периода. Ниже приведены сведения об энергии, длине и порядке связи гомоядерных молекул элементов 2-го периода  [c.54]

    Распределение электронов по молекулярным орбиталям и свойства молекул N2, N0 и молекулярных ионов N0 , N0" [c.361]

    Если поставить перед собой задачу связать эти величины со свойствами молекул реагирующих веществ, то следует развить новую теорию и дать новую терминологию, причем в качестве первоначальных величин должны браться молекулярные константы. [c.106]

    НЕКОТОРЫЕ СВОЙСТВА МОЛЕКУЛ [c.143]

    Теория, которую мы развили относительно кинетической природы неравновесных систем, имеет два существенных недостатка. Первый недостаток заключается в том, что нам пришлось использовать равновесные функции распределения для упрощения математических расчетов. Это затруднение было в значительной степени снято методом, развитым Чепменом, Энскогом и другими, в котором ряд последовательных приближений позволяет получить неравновесные функции распределения, более соответствующие физической системе. Второй более важный недостаток до сих пор удовлетворительно не устранен он заключается в использовании искусственных моделей для представления о молекулах. Строго говоря, весь процесс столкновения молекул определяется силовым полем, окружающим каждую молекулу. Представляя силовое поле молекул искусственной моделью, мы обходим непреодолимые математические трудности, возникающие при строгом рассмотрении. Однако в результате вводится целый ряд новых параметров молекул, которые оказываются неопределимыми, исходя из простых свойств молекул. В случае жесткой сферической модели мы ввели молекулярный [c.172]


    Существует, однако, иной подход к описанию сложных молекул, основанный на использовании локализованных двухатомных молекулярных орбиталей. В данной главе мы уделим внимание главным образом рассмотрению теории локализованных связей, так как она дает простую основу для обсуждения многих свойств молекул в невозбужденном состоянии, особенно геометрического строения молекул. Теория делокализованных молекулярных орбиталей очень удобна для обсуждения я-связывания в молекулах, подобных бензолу, которые при использовании льюисовых представлений требуют для своего описания две или большее число резонансных структур. Поэтому л-связывание в бензоле будет рассмотрено нами как пример применения теории делокализованных молекулярных орбиталей. [c.551]

    Натуральным логарифмом многочленной функции Q и его первой и второй производной, отнесенными к температуре, можно полностью охарактеризовать термодинамические свойства молекулы. Так, [c.369]

    Основная общая задача физической химии—предсказание временного хода химического процесса и конечного результата (состояния равновесия) в различных условиях на основании данных о строении и свойствах молекул веществ, составляющих изучаемую систему. [c.12]

    Молекулы с неспаренными электронами (например, В2 или О2) обладают парамагнитными свойствами. Молекулы, в которых все электроны спарены (например, Ь 2 или являются диамагнитными. [c.544]

    При всем различии методов термодинамики и статистической физики между этими разделами теоретической физики нет и не может быть непереходимой границы, так как измеримые свойства макроскопических систем и термодинамическое состояние этих систем закономерно связаны со свойствами отдельных молекул. Основные законы термодинамики, вытекающие нз опыта и обобщающие опыт, связываются со свойствами молекул методами статистической физики, соответствующий раздел которой называется статистической термодинамикой. В отличие от этой дисциплины термодинамика, построенная дедуктивно, исходя из основных законов термодинамики, которые рассматриваются как обобщение опыта, называется часто классической или феноменологической термодинамикой. В своих конкретных результатах эти два направления, естественно, согласуются. [c.28]

    Однако, как было показано выше, вычисление потенциальной энергии адсорбированной молекулы представляет трудную задачу и может быть количественно выполнено лишь приближенно и только в простейших случаях. Тем не менее даже качественное рассмотрение адсорбции молекул яр но-статистическими методами представляет большой интерес, так как позволяет установить, от каких свойств молекул адсорбата и образующих адсорбент частиц зависят такие важные термодинамические характеристики адсорбционных систем, как дифференциальная работа и теплота адсорбции, константа равновесия в уравнении изотермы адсорбции и т. п. [c.507]

    Здесь же вводится и представление об электроотрицательности элементов следует подчеркнуть его важность как средства приближенного предсказания ряда свойств молекул, например степени ионности связи. При прохождении этой темы также рекомендуется остановиться на периодических закономерностях. [c.574]

    Для большинства веществ частицы представляют собой молекулы. Молекула — наименьшая частица вещества, обладающая его химическими свойствами. Молекулы в свою очередь состоят из атомов. Атом — наименьшая частица элемента, обладающая его химическими свойствами. В состав молекулы может входить раз личное число атомов. Так, молекулы благородных газов одно-атомны, молекулы таких веществ, как водород, азот,— двухатомны, воды — трехатомны и т. д. Молекулы наиболее сложных веществ — высших белков и нуклеиновых кислот — построены из такого количества атомов, которое измеряется сотнями тысяч. При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов, число различных веществ очень велико. [c.20]

    Многоцентроаые связи. По мере развития метода валентных связей выяснилось, что в некоторых случаях любая из возможных для данной молекулы палентных схем плохо согласуется с установленными на опыте свойствами этой молекулы истинные свойства молекулы оказываются промежуточными между теми, которые приписываются ей каждой отдельной схемой. В подобных случаях структуру молекулы можно выразить набором нз нескольких валентных схем. Такой способ описания молекул получил названне метода наложения валентных схем. [c.139]

    Таким образом, описанная выше элементарная молекулярно-кинетическая теория дает правильное объяснение свойств идеальных газов. Она убеждает в подлинности существования молекул и позволяет надеяться, что модификации этой простой теории, учитывающие свойства молекул реальных газов, дадут возможность объяснить отклонения в их поведении от предсказываемых для идеального газа. [c.150]

    Как можно вычислить константу скорости по данным о свойствах молекул А, В, С и D Одно из наиболее ранних наблюдений заключается в том, что константа скорости к изменяется с температурой константа скорости больше и скорость реакции выше при более высоких температурах. [c.364]

    Как показывает квантовомеханический анализ, локализованные на определенных связях и определенным образом направленные в пространстве гибридные орбитали оказываются оптимальными для рассмотрения коллективных свойств молекулы. Кроме того, в терминах локализованных гибридных орбиталей могут быть наилучшим образом объяснены такие особенности молеку--лярных систем, как трансферабельность и аддитивность ряда свойств связей. [c.210]

    Но как только переходят к описанию одноэлектронных свойств молекул, требуется введение более общих и физически более адекватных представлений [c.210]

    Дополнительные осложнения, обусловливающие нечеткость суждений о механизме процесса, порождаются тем, что молекулы, которые непосредственно участвуют в катализе, даже при больших покрытиях составляют обычно лишь некоторую небольшую часть монослоя. Поэтому прп изменении физических и физикохимических свойств молекул, хемосорбированных на активных центрах, как правило, приходится иметь дело с очень малыми абсолютными концентрациями, и притом на фоне тех же характеристик для молекул, адсорбированных на других (неактивных или побочных) центрах, и молекул второго, а иногда п последующих слоев. Картина еще более осложняется за счет проявления аналогичных характеристик самого твердого тела. [c.13]

    В ряду НзЫ — Н3Р — НзАз — Нз5Ь — В1Нд электронодонорные свойства молекул ослабевают. Так, если производные аммония вполне устойчивы, то арсоний-ион АзН обнаружен лишь с помощью ИК-спектра (в смеси НдАз и Н1 при низкой температуре). Ионы 5ЬН и В1Н4 вообще не обнаружены. [c.382]

    С другой стороны, химический состав среды и ее полярность определяют, будут ли и в какой степени растворяться в ней конкретные ПАВ, что зависит от ван-дер-ваальсовой составляющей энергии связи этого ПАВ со средой. Чем эта энергия связи выше и чем растворимость ПАВ лучше, тем хуже его поверхностные (в частности, защитные и противокоррозионные) свойства. Молекулы среды способны вступать в межмолекулярное взаимодействие с молекулами ПАВ с образованием Н-ком-плексов, я-комплексов и комплексов с переносом заряда. Тем самым молекулы ПАВ поляризуются, увеличивается их дипольный момент и относительная степень ионности. Все это приводит к возрастанию общего энергетического взаимодействия. [c.207]

    Исследования показывают, что макрофизические свойства вещества (например, поверхностное натяжение, вязкость, теплопроводность) только косвенно зависят от структуры молекулы (лишь в той степени, в какой структура влияет на массу, объем, форму, поляризуемость и дипольный момент молекулы). Непосредственное влияние на макрофизические свойства вещества оказывают перечисленные свойства молекулы, а поскольку некоторые из них являются аддитивными величинами, то, следовательно, можно сделать вывод о возможности косвенного аддитивного определения макрофизических свойств вещества. Примеры таких расчетов будут приведены ниже. [c.76]

    Присоединение длинной боковой алкильной цепи к кольцевой струк-турс сближает свойства молекулы со средними свойствами парафинового ряда [87]. Однако, если рассматривается такой гомологический ряд, в котором отношение числа углеродных атомов в кольцах к числу углеродных n-j Бензол атомов в цепях постоянно, то интер- j,qq. у Цепт рефракции остается практически / постоянным [36, 43]. / [c.257]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Такие свойства, как температуры плавления и кипения, механическая прочность и твердость, определяются прочностью связи между молекулами в данном веществе при данном его агрегатном состоянии поэтому применение подобных понятий к отдельной молекуле не имеет смысла. Плотность — это свойство, которым отдельная молекула обладает и которое можно вычислить. Однако плотность молекулы всегда больше плотности вещества (даже в твердом состоянии), потому что в любом веществе между молекулами всегда имеется некоторое свободное пространство, А такие свойства как электропроводность, теплоемкость, определяются не свойствами молекул, а структурой вещества в целом. Для того чтобы убедиться в этом, достаточно вспомнить, что эти свойства сильно изменяются при изменении агрегатного состояния вещества, тогда кан молекулы при этом не претерпевают глубоких изменений. Таким образом, понятия о некоторых физических свойствах не применимы к отдельной молекуле, а о других — применимы, но сами эти свойства по своей величине различны для модекулы и, для вещества в целом. [c.20]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Ра нработаи-ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45), — все же он сыграл большую роль в разработке квантово-механической теории химическон связи и не потерял своего значения до настоящего времени. [c.121]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Метод молекулярных орбиталей. Как было показано в предыдущих параграфах, метод ВС позволяет понять способность атомов к образованию 01]ределенного числа ковалентных связей, объясняет направленность 1 овалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС пе может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. [c.141]

    Как и К 1КИ0 свойства молекул и сложных ионов изменяются при удалении электрона а) со связывающей МО, б) с разрыхляющей МО  [c.61]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опыть ых данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]


Смотреть страницы где упоминается термин Свойства молекул: [c.79]    [c.147]    [c.574]    [c.75]    [c.80]    [c.530]    [c.314]    [c.179]   
Смотреть главы в:

Гликопротеины Том 2 -> Свойства молекул




ПОИСК







© 2025 chem21.info Реклама на сайте