Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межмолекулярные взаимодействия воды с неорганическими соединениями

    Рассматриваются особенности структуры воды, ее колебательный спектр, водородные связи, образуемые водой, и методы расчета этих связен. Обсуждаются межмолекулярные взаимодействия воды с органическими и неорганическими соединениями. [c.4]

    МЕЖМОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ ВОДЫ С НЕОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ [c.53]

    Действие агрессивных сред на каучуки и резины, находящиеся в ненапряженном состоянии, рассматривается в монографии [5], где также обсуждается влияние на процесс разрушения химического строения и структуры полимеров и факторов, относящихся к среде. При химическом взаимодействии резин с жидкостью или газом могут происходить необратимые изменения каучуковой основы, в результате чего обкладки или покрытия на металлах утрачивают защитные свойства. К высокоактивным химическим средам следует отнести нагретые растворы азотной и соляной кислот, концентрированную серную кислоту, неорганические и органические пероксиды, озон, фтор, хлор и другие галогены. Особо следует выделить жидкие органические кислоты, которые могут при высоких концентрациях проявлять себя и как реакционноспособные соединения и как органические растворители. В качестве первых они реагируют с макромолекулами сшитого каучука, в качестве вторых — сильно ослабляют межмолекулярные связи. Водные растворы большинства минеральных солей, а также кислот, не обладающих окисляющими свойствами, при средних концентрациях и температурах диффундируют в резины, вызывая набухание без деструктивного распада макромолекулы каучука. В этом случае основная нагрузка падает на адгезионный подслой, который должен служить дополнительным антикоррозионным барьером. Здесь уместно заметить, что большинство антикоррозионных резин на основе карбоцепных каучуков (а возможно, и других) обладают избирательной диффузионной проницаемостью, т. е. проявляют мембранный эффект. Именно поэтому они, например, в дистиллированной воде набухают больше, чем в морской, а в морской больше, чем в концентрированных растворах минеральных солей. На некоторые гетероцепные каучуки, например на полиэфируретаны, горячая вода оказывает химическое действие, вызывая гидролитическую деструкцию макромолекул. [c.7]


    Электронейтральная ковалентная связь не вызывает сильных электростатических сил, поэтому взаимодействие между отдельными молекулами незначительно. С другой стороны, поляризуемость гомеополярной связи ) относительно велика, и поэтому преобладают зависящие от поляризации межмолекулярные силы (силы Ван дер Ваальса — Лондона, силы дисперсии см. об этом в учебниках по физической химии). Органические вещества, в которых сцепление молекул осуществляется в общем за счет атомных связей, кристаллизуются в такие молекулярные решетки, энергия которых значительно меньше энергии ионных решеток. Поэтому точки плавления, кипения и сублимации у типично органических веществ значительно ниже, чем у типично неорганических соединений. Вследствие своей относительно высокой поляризуемости органические растворители вступают с молекулярными решетками в более сильное взаимодействие, чем, к примеру, сильно полярная, но слабо поляризуемая вода, поэтому органические вещества растворяются преимущественно органическими растворителями similia similibus solvuntur) ). У типично неорганических соединений, кристаллизующихся в ионных решетках, все происходит как раз наоборот. [c.118]

    При образовании осадков в результате взаимодействия твердой (вещества колонки) и жидкой (компонентов хроматографируемого раствора) фаз они остаются в месте сорбции вступившего в реакцию осадителя. Осадитель удерживается на иосителе в результате действия межмолекулярных сил взаимного притяжения или химического взаимодействия его с носителем. Последнее может иметь место при образовании осадочных хроматограмм на колонках, состоящих из ионообменников как органической так и неорганической природы, заряженных ионами, способными давать осадки с ионами хроматографируемого раствора. При формировании осадочных хроматограмм катионов на анионо-обменнике, заряженным любыми ионами, способными давать осадки с хроматографируемыми компонентами раствора, процесс закрепления осадков в месте их выпадения можно представить следующим образом. Ионообменник, заряженный ионом осадителя, может частично диссоциировать за счет, полярного действия растворителя, а также вступать в реакцию ионного обмена с одноименно заряженными ионами раствора. При наличии в хроматографируемом растворе катионов, дающих малорастворимые осадки с ионами осадителя, равновесие системы смещается в сторону образования осадка, который остается в месте его выпадения не только за счет механического задерживания и адгезии, но и за счет полярного притяжения ионообменником молекул осадка со стороны отрицательно заряженного иона. Что касается образования осадочных хроматограмм на колонках, состоящих из специфически действующих органических ионитов, то здесь вступает в реакцию часть молекулы реагента не переходя в раствор, и осадок остается на месте вступившей в реакцию молекулы ионита. Образуется как бы комплексное соединение, аддендами в котором являются молекулы ионообменника. При промывании таких хроматограмм водой смещения зон не происходит. [c.38]



Библиография для Межмолекулярные взаимодействия воды с неорганическими соединениями: [c.275]   
Смотреть страницы где упоминается термин Межмолекулярные взаимодействия воды с неорганическими соединениями: [c.323]   
Смотреть главы в:

Состояние воды в органических и неорганических соединениях -> Межмолекулярные взаимодействия воды с неорганическими соединениями

Состояние воды в органических и неорганических соединениях -> Межмолекулярные взаимодействия воды с неорганическими соединениями




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Взаимодействие с неорганическими соединениями

Межмолекулярные



© 2025 chem21.info Реклама на сайте