Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиоактивные излучения химическое действие

    Биологическое действие радиоактивных излучений характеризуется ионизацией атомов и молекул тканей и органов человека, в результате чего происходит разрыв нормальных молекулярных связей и изменение химической структуры различных соединений. Изменение в химическом составе значительного числа клеток молекул приводит к нх гибели. Поэтому чем боль[це в веществе актов ионизации под воздействием лучей, тем сильнее биологический эффект. [c.55]


    В процессе хранения и эксплуатации изделий из полимеров под действием света, теплоты, радиоактивных излучений, кислорода, различных химических вешеств может происходить излишне глубокое сшивание макромолекул, которое также является причиной ухудшения свойств полимера появляется хрупкость, жесткость, резко снижается способность к кристаллизации. В итоге наблюдается потеря работоспособности изделий из полимеров. Поэтому проблема защиты полимеров от вредных воздействий различных структурирующих и деструктирующих факторов имеет самое актуальное значение. Нежелательное изменение структуры полимеров увеличивается при приложении к ним неразрушающих механических напряжений, приводящих к развитию деформаций. Особенно этот эффект заметен при приложении многократно повторяющихся механических напряжений. При этом протекает деструкция и сшивание цепей, образуются разветвленные структуры, обрывки беспорядочно сшитых макромолекул, что изменяет н целом исходную молекулярную структуру полимера. Все эти нежелательные изменения приводят к старению полимеров. [c.239]

    Другой пример модификации полимеров — поперечное сшивание их молекул. Схематично сшитый полимер показан на рис. 20.3. Сшивание молекул может происходить под действием химических вешеств, радиоактивного излучения. Полиэтилен, молекулы которого сшиты под действием облучения, становится более тепло- и морозостойким, более устойчивым к растрескиванию. [c.327]

    Кроме того, трибутилфосфат обладает чрезвычайно малой растворимостью в воде (табл. 41), а также мало чувствителен к радиоактивным излучениям [52]. В химическом отношении трибутил фосфат также очень стабилен. Его гидролиз водой практически исключается. Он также устойчив по отношению к концентрированной азотной кислоте и только при ее концентрации 16 и более имеет место заметное разложение трибутилфосфата с образованием ди- и монобутилфосфорной кислот. Трибутилфосфат устойчив к действию многих окислителей, в том числе таких сильных, как церий (IV) и др. [c.295]

    Приборы автоматизации с радиоактивными датчиками, применяемые в химической промышленности. Радиоизотопные реле. Радноизотопными реле называются устройства релейного типа, действие которых основано на регистрации изменения интенсивности определенного типа радиоактивного излучения. Реле сконструированы таким образом, что они срабатывают в тот момент, когда интенсивность излучения достигает какого-либо определенного, чаще всего экстремального (т. е. максимального либо минимального) значения. Обязательными структурными узлами радиоизотопных реле (принципиальная схема дана на рис. 48) являются детектор излучения и выходной релейный элемент (электромагнитное реле). [c.235]


    Воздействие радиоактивного излучения. Под действием радиоактивного излучения происходит разрыв химических связей и разрушение молекул. Образующиеся при этом радикалы вступают в различные химические реакции, нарушая нормальное функционирование клеток. Глубина проникновения в организм лучей зависит от их типа. Так, а-лучи через кожу практически не проникают, Р-лучи — проникают на глубину 10— 20 мм, у-лучи и рентгеновские лучи через организм проникают практически беспрепятственно. Чрезвычайно опасно попадание в организм радиоактивных веществ с пищей и питьем. Воздействие радиоактивных веществ зависит от их природы. Так, излучение стронция-90, замещающего кальций в костях, вызывает раковые заболевания. Криптон-85 воздействует на кожу и легкие. [c.524]

    В этой главе будут рассмотрены вопросы, относящиеся к методу меченых атомов, реакциям изотопного обмена, химическому действию радиоактивных излучений и пр., причем предполагается, что основные сведения о явлениях радиоактивности, природе радиоактивных излучений, ядерных реакциях и пр. известны из курса физики. [c.541]

    Органические соединения в природе образуются в процессе фотосинтеза из диоксида углерода и воды. Этот процесс протекает в зеленых растениях под действием солнечного излучения, поглощаемого хлорофиллом. В результате фотосинтеза возникли и ископаемые источники энергии, и химическое сырье, т. е. уголь, нефть и природный газ. Однако органические соединения должны были существовать на Земле и до возникновения жизни, которая не могла появиться без них. Так как в первичной земной атмосфере присутствовали прежде всего водород и вода, а также оксид углерода, азот, аммиак и метан, а кислорода не было, то еще около 2 млрд. лет назад она имела восстановительный характер и в существовавших условиях (сильное радиоактивное излучение земных минералов и интенсивные атмосферные разряды) в ней могли протекать реакции типа [c.9]

    Методы, основанные на ядерных реакциях—радиоактивационный, или (его главная часть)—нейтронно-активационный метод анализа. Нейтронно-активационный метод возник после открытия атомной энергии и создания действующих атомных реакторов. Принцип метода заключается в следующем. Анализируемый материал подвергают действию нейтронного излучения в атомном реакторе или посредством нейтронного генератора. При взаимодействии нейтронов с ядрами элементов происходят ядерные реакции и образуются радиоактивные изотопы всех элементов, входящих в состав пробы. Затем пробу переводят в раствор и разделяют элементы химическими методами. Завершающим этапом определения является измерение интенсивности радиоактивного излучения каждого элемента пробы. [c.32]

    При обычных условиях водород мало активен. Его реакционная способность сильно возрастает а) при нагревании б) под действием ультрафиолетового облучения в) под действием электрической искры и электрического разряда (например, дуги) г) в момент выделения д) в присутствии катализаторов е) под действием радиоактивных излучений [18 Повышение химической активности водорода под воздействием перечисленных факторов в известной д ере объясняется частичным образованием при этом атомарного водорода, который значительно более активен, чем молекулярный [17.  [c.22]

    В настоящее время искусственно получены сотни радиоактивных изотопов химических элементов. Раздел химии, изучающий радиоактивные элементы и их поведение, называется радиохимией. Следует различать радиохимию и радиационную химию, предметом которой являются химические процессы, протекающие под действием ионизирующих излучений. [c.94]

    Химическое действие радиоактивных излучений. Исследованием химических изменений, возникающих в веществе под действием ядерных излучений, занимается радиационная химия. Вскоре после работ Беккереля была обнаружена способность излучений радия разлагать воду на водород и кислород. В последующие годы расширились работы, посвященные действию излучений радиоактивных элементов на различные вещества. Было установлено, что под действием излучений возникают ионы и радикалы. Часто наблюдается протекание цепных реакций. Современный этап радиационной химии связан с появлением мощных источников ядерных излучений. Решение прикладных задач по эксплуатации ядерных [c.407]

    Радиолизом называют химические превращения под действием радиоактивных излучений. Ионы, возбужденные молекулы и электроны, образующиеся при поглощении излучения, успевают претерпеть целую вереницу превращений, которые приводят к тому, что в облученном веществе появляются совершенно новые частицы— продукты радиолиза. Начальные значения радиационной энергии значительно превосходят энергию связи валентных электронов. Поэтому поглощение этой энергии происходит не только в области частот, отвечающих полосам поглощения вещества, но и за пределами этих полос, т. е. имеет неизбирательный характер. Конкретный механизм радиационно-химического процесса не зависит от вида излучения и с количественной стороны характеризуется величиной поглощенной энергии. Для оценки эффективности действия излучения вводят количественную характеристику — так называемый радиационный выход g). Радиационный выход — выход числа молекул, атомов, ионов и других продуктов реакции на ]00 эВ поглощенной энергии. Для большей части веществ радиационный выход составляет 4—10 частиц. Однако для ряда реакций разложения =0,1, а для развивающихся по цепному механизму может достигать 10 -=-10 . [c.408]


    Последнее время усиленно изучается обменная сорбция К , Rb" и s на ионитах минерального происхождения, таких, как цеолиты, анальцим фосфат, молибдат и вольфрамат циркония. В ряде случаев было показано, что калий, рубидий и цезий лучше разделяются на минеральных ионитах, чем на органических. Минеральные иониты благодаря своему регулярному и относительно жесткому каркасу обладают по сравнению со смолами более высокой селективностью к отдельным щелочным металлам, превосходят органические иониты по устойчивости н действию высокой температуры и радиоактивного излучения. К сожалению, минеральные иониты не отличаются достаточной химической стойкостью и часто склонны к пептизации, что, естественно, ограничивает область их применения. [c.145]

    Существуют физические и химические методы анализа. Это деление несколько условно, между методами обеих групп нет резкой границы. В обоих случаях качественное обнаружение и количественное определение составных частей анализируемого материала основано на наблюдении и измерении какого-либо физического свойства системы. Измеряют, например, электропроводность, плотность, интенсивность окраски, интенсивность радиоактивного излучения, массу, объем, электрический потенциал и на этом основании делают вывод о количестве данного элемента или его соединений. Однако при анализе физическими методами наблюдение и измерение выполняют непосредственно с анализируемым материалом, причем химические реакции либо совсем не проводят, либо они играют вспомогательную роль. В химических методах пробу подвергают сначала действию какого-либо реагента, т. е. проводят определенную химическую реакцию, и только после этого наблюдают и измеряют физическое свойство. В соответствии с этим в химических методах анализа главное внимание уделяют правильному выполнению химической реакции, в то время как в физических методах основной упор делается на соответствующее аппаратурное оформление измерения — определение физических свойств. [c.14]

    Различия в физико-химических свойствах радиоактивных и нерадиоактивных кристаллических соединений одинакового химического состава обусловлены двумя основными причинами а) появлением примесей посторонних химических элементов (соединений), образовавшихся - в результате радиоактивного распада соответствующего радиоэлемента б) изменением физических характеристик кристалла в результате действия собственного радиоактивного излучения. [c.212]

    Ионные выходы радиационно-химических реакций. Количественные исследования химических реакций, идущих под действием радиоактивных излучений, показывают, что ионные выходы реакций, измеряемые числом прореагировавших молекул, отнесенным к числу образующихся пар ионов, подобно квантовым выходам, для различных реакций могут иметь разнообразные значения. Значения ионных выходов для некоторых реакций приведены в табл. 49. [c.464]

    Таким образом, в зависимости от типа частицы, ее энергии, химического состава образца, времени облучения в смазочном материале происходят различные микроскопические изменения, начиная от ионизации атомов и молекул и кончая полным превращением одних атомов в другие. При этом разрываются химические связи и образуются свободные радикалы, ионы и радикал-ионы, которые обладают свободными валентностями и избыточной энергией. В результате в облучаемой среде возникают различные химические реакции синтез и разложение, полимеризация и деструкция, окисление и восстановление, изомеризация или любая комбинация из этих процессов. Совокупность микроскопических процессов, происходящих под действием радиоактивного излучения, вызывает возникновение макроскопических эффектов в смазочных материалах. Изменения, которые при этом претерпевают смазочные материалы, могут быть весьма значительными и зачастую приводят к полной потере их эксплуатационных свойств. [c.240]

    Совместное действие ионизирующего излучения и кислорода приводит к окислению хлорированных полимеров. Этот процесс можно ингибировать. Скорость его зависит от химической природы полимера, наличия и природы ингибитора и т. д. Так, действие радиоактивного излучения большой мощности в присутствии кислорода приводит к окислению ХСПЭ [121]. Однако доля присоединенного кислорода значительно меньше, чем у резин на основе других каучуков (НК, СКН-26, СКД, СКИ-3, наирита). При одной и той же толщине образца с увеличением мощности дозы до 2,3 МР/ч доля присоединенного кислорода меньше, чем в случае облучения резин на основе ХСПЭ при мощности дозы 0,045 МР/ч. Предполагается, что это вызвано большей вероятностью рекомбинации радикалов, возникающих при радиационном старении, а также диффузионными задержками кислорода при высоких дозах облучения. [c.53]

    Полиэтилен обладает высокой химической стойкостью и механической прочностью. Он стоек к действию радиоактивных излучений, морозостоек и хорошо обрабатывается на технологическом оборудовании. Эти свойства полиэтилена и явились основой для использования его в качестве ингредиента резиновых смесей. [c.56]

    Радиоактивностью называется снособность атомов неустойчивых и,зотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важн( й иими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газов, т. е. возбуждение в них электро-нрово.цности в) высокий тепловой эффект процесса, отличающий его от обычных химических превращений г) возбуждение свечения некоторых веществ, напрнмер 2п.Я д) значительная проникающая способность и др. [c.61]

    Как указывалось, цепная химическая реакция осуществляется при помощи свободных атомов и радикалов. Поэтому образование активных центров этого тина есть необходимое условие возникновения цепной реакции. Оставляя в стороне фотохимические реакции и реакции, возбуждаемые действием радиоактивных излучений и быстрых электронов, остановимся здесь на термических реакциях. При любой температуре некоторое количество свободных атомов и радикалов всегда присутствует в газе как результат термической (равновесной) диссоциации газа. Однако при температурах ниже 1000° К их концентрация и скорость образования в процессе простого соударения молекул [c.399]

    Термическая генерация активных центров в газовой фазе. Как указывалось, цепная химическая реакция осуществляется при помощи свободных атомов и радикалов. Поэтому образование активных центров этого типа есть необходимое условие возникновения цепной реакции. Оставляя в стороне фотохимические реакции и реакции, возбуждаемые действием радиоактивных излучений и быстрых электронов, где возникновение активного центра реакции, связанное с первичным актом воздействия излучения на молекулу реагирующего вещества, в большинстве случаев представляет собой процесс, механизм которого может быть установлен с большой достоверностью, остановимся здесь лишь на термических реакциях. В противоположность упомянутым реакциям механизм рождения радикалов и атомов в термических реакциях далеко не во всех случаях в достаточной мере ясен. При любой температуре некоторое количество свободных атомов и радикалов всегда присутствует в газе как результат термической (равновесной) диссоциации газа. Однако при температурах ниже 1000° К их концентрация и скорость образования в процессе простого соударения молекул [c.485]

    Радиометрические методы анализа твердых и жидких веществ основаны на использовании явлений поглощения и отражения радиоактивных излучений веществом или на возбуждении вторичного излучения в анализируемой пробе. При анализе газов эти эффекты не подходят, так как газы вследствие их малой плотности почти не оказывают влияния на излучение. Важное значение имеет изменение электропроводности газов при воздействии излучения, обусловле.шое ионизацией атомов и молекул газа. Индуцированная электропроводность зависит от химических и физических свойств газов, что позволяет провести анализ газов или их смесей. На этом принципе основано действие ионизационных анализаторов. Ионизационный анализатор состоит из ионизационной камеры и прибора, измеряющего ток ионизации (рис. 6.13). В камере закреплен радиоактивный препарат, излучение которого вызывает ионизацию пробы анализируемого вещества, находящейся в межэлектродном пространстве. Электрометром измеряют возникающий ионный ток, который при постоянной толщине радиоактивного препарата и постоянном электрическом поле зависит от плотности и состава газа. [c.324]

    В основу методов получения большинства меченых соединений могут быть положены химические методы синтеза, разработанные для соответствующих неактивных препаратов. Однако проведение любого синтеза с радиоактивными изотопами имеет ряд особенностей [70]. Аппаратурное и техническое оформление синтеза должно отвечать требованиям, предъявляемым к работе с радиоактивными препаратами. Обязательными являются тщательная предва-рительная отработка всех стадий синтеза на неактивных препаратах, полная герметичность аппаратуры, оснащение рабочего места защитными экранами, проведение экспериментов в специальных вытяжных шкафах. Схема синтеза меченых соединений должна обеспечивать возможно меньшее время соприкосновения работающего с радиоактивными препаратами и, следовательно, возможно меньшее число стадий и операций. При этом необходимо учитывать химическое действие излучений радиоактивных изотопов на вводимые в реакцию реагенты и образующиеся соединения. [c.45]

    Химические свойства воды также определяются ее составом и строением. Молекулу воды можно разрушить только энергичным внешним воздействием. Вода начинает заметно разлагаться только при 2000 °С (термическая диссоциация) или под действием ультрафиолетового излучения (фотохимическая диссоциация). На воду действует также радиоактивное излучение. При этом образуются водород, кислород и пероксид водорода Н2О2. Щелочные и щелочноземельные металлы разлагают воду с выделением водорода при обычной температуре, а магний и цинк — при кипячении. Железо реагирует с водяными парами при красном калении. Вода является одной из причин коррозии — ржавления металлов (с. 156). Благородные металлы с водой не реагируют. [c.101]

    ЦЕРИЙ ( erium, от названия астероида Церис) Се — химический элемент П1 группы 6-го периода периодической системы элементов Д. И. Менделеева, относится к лантаноидам, п. н. 58, ат. м. 140,12. Природный Ц. состоит из 3 стабильных изотопов, известны около 15 радиоактивных изотопов. Открыт Ц. в 1803 г. Берцелиусом и Хизингером и независимо от них Клапротом. Основным сырьем для получения Ц. является минерал монацит. Ц.— мягкий металл серого цвета, т. пл. 804 С. Химически активен. В соединениях проявляет степень окисления +3 и +4, чем и отличается от других редкоземельных элементов. Ц. применяют в производстве высокоплас-тичных и термостойких сплавов, для изготовления стекла, не темнеющего под действием радиоактивного излучения, для дуговых электродов, кремней зажигалок и др. Соли Ц. (IV) — сильные окислители, используются в аналитической химии для определения различных восстановителей. [c.283]

    Во многих случаях устойчивость аэрозолей увеличивается благодаря присутствию стабилизатора. Стабилизация при этом осуществляется путем приобретения электрического заряда или путем образования защитных слоев на поверхности частиц. Электрический заряд частиц возникает либо в результате адсорбции ионов-из газовой среды или за счет ионизации газа (воздуха) под действием ультрафиолетовых, рентгеновских и космических лучей, а также радиоактивных излучений либо, наконец, за счет трения. Знак заряда пылевых частиц зависит и от химического состава пыли и дыма основные вещества (СаО, ZnO, MgO, РегОз) дают отрицательно заряженные пыли, а кислые (SiOj, РгОб, а также уголь) — положительно заряженные. В отличие от гидрозолей частицы аэрозолей не имеют диффузного слоя ионов (слоя противоионов) кроме того, частицы в аэрозолях могут jie TH paMH4№ie по знаку и величине заряды или быть нейтральными. При этом наибольшую устойчивость проявляют аэрозоли с одноименно заряженными частицами. [c.350]

    Возможности и перспективы радиационной химии. Радиацион ная химия имеет уже более чем 25-лстний стаж развития. Начало ее было положено применением и. )лучения для облагораживания полиэтилена. В настоящее время в мире используется около 40 промышленных методов радиоактивного излучения. Ввиду того, что активация реагентов практически любыми лучами не обладает селективным действием, она применяется в тех случаях, когда мишенью оказывается не фрагмент молекулы, т. е. та пли иная химическая связь, и даже не молекула, а макротело. Таковыми могут быть, например, тот же полиэтилен или поливинилхлорид, которые при облучении приобретают большую термостойкость и твердость благодаря сп1иванию их линейных макромолекул в трех- мериукз сетку. [c.237]

    Еще более сильное действие на молекулы оказывают ядерные излучения (т лучи, протоны, нейтроны и др.) и рентгеновы лучи. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности, химию меченых атомов . Радиационная химия развивается в связи с развитием ядерной физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень [c.46]

    Еще более сильное действие на молекулы оказывают ядерные излучения (у-излучение, протоны, нейтроны и др.) и рентгеновское излучение. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности химию меченых атомов . Радиационная химия развивается в связи с развитием ядернсй физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень мощные потоки частиц, которыми все больше начинают пользоваться для осуществления химических реакций. Эти излучения рвут связи, выбивают отдельные атомы, порождают радикалы и ионы, а затем идут перегруппировки связей и возникают новые. Например, вместо двухстадийного обычного химического получения фенола из бензола можно получать это важнейшее вещество из бензола и воды в одностадийном процессе с использованием ядерных излучений. При этом из воды получаются радикалы ОН и Н и бензол далее реагирует по схеме [c.57]

    Воздействие реагмтов на битум зависит от его химического состава, происхождения, способа получения и твердости. Чем тверже битум, тем выше его сопротивляемость к действию химических реагентов. Мягкие битумы с высоким кислотным числом подвергаются действию разбавленных щелочей. При ком11атной температуре битумы устойчивы к действию 20%-ных гидроокиси натрия или карбоната натрия. При обычной температуре битумы обладают высокой химической стойкостью. При температуре более 150°С битум вступает в реакцию с кислородом, серой, хлором и другими веществами. Эти свойства используют для получения различных сортов битумов. Под действием воздуха, света и радиоактивных излучений свойства битумов медленно изменяются, происходит их старение. Степень окисления зависит от величины поверхности, подверженной воздействию кислорода воздуха, и от скорости диффузии последнего к поверхности раздела фаз и в битум. В результате образуются растворимые в воде продукты окисления, дающие кислую реакцию. Исследования показали, что воз-, дух и свет влияют только на поверхность битума, применяемого как защитный материал слоем толщиной несколько миллиметров. [c.82]

    Бнологическое действие излучения. Как будет подробнее рассмотрено в гл. 12, одним из химических следствий взаимодействия радиоактивного излучения с веществом является изменение химического состава облученных молекул и, в частности, образование свободных радикалов. Таким образом, облучение живого вещества ведет к прямым нарушениям биохимических функций клеток и тем самым оказывает влияние на жизнедеятельность организма. [c.125]

    Большое значение для получения меченых соединений имеет метод изотопного обмена. Если обмен происходит легко, то быстро и просто удается получить требуемое меченое соединение или выделить радиоизотоп в чистом виде из сложной смеси. Иногда изотопный обмен облегчается и ускоряется под действием радиоактивного излучения применяемого изотопа или внешнего источника излученин. Однако в этом случае обмен осложняется радиационно-химическими процессами разложения исходного соединения и синтеза из образующихся при этом радикалов и остатков ряда новых меченых п немеченых соединений. [c.12]

    Старение представляет собой процесс самопроизвольного изменения свойств полимеров (прочности, эластичности, твердости и т. д.), протекающий при хранении или эксплуатации полимеров и материалов на их основе. Старение является, прежде всего, результатом химических процессов, обусловленных действием кислорода, озона (небольшие количества его всегда находятся в атмосфере), нагревания, света, радиоактивного излучения, механической деформации и т. д., которые приводят к деструкции и структурированию. Из перечисленных факторов решающее значение имеет действие кислорода, остальные играют роль инициаторов окисления. Старение возможно также за счет испарения из полимерной композиции летучих компонентов (ингибиторы, пластификаторы), а также зелаксации цепей или их участков у ориентированных материалов. Ла рис. 199 показано влияние окислительного старения на механические свойства вулканизатов. [c.644]

    Изменение пространственной структуры белка без разрушения пептидных связей под действием различных физических факторов (нагревание, действие ультразвука, ультрафиолетовое й радиоактивное излучение и т. д.) и химических вевдеств (крепкие кислоты, щелочи, соли тяжелых металлов, органические растворители) называется денатурацией. [c.37]

    Полимеры претерпевают раз гичные химические превращения под действием рентгеновских лучей, радиоактивных излучений и пучков элек-фонов. [c.106]

    Ниже описаны приборы для измерения энергии и интенсивности радиоактивных излучений с целью определения вида и содержания радиоизотопа в веществе определенпя химического состава иерадиоактивиых веществ (методы радио изотопного разбавления, активационного анализа) исследования поведения веществ в различных физико-химических процессах методами меченых атомов определения физических и механических характеристик объектов (плотности, толщины, распределения дефектов, числа преДаметов, скорости перемещения и т. д.) дозн-метрии (определения характеристик полей излучения, дозы облучения). Их действие основано на регистрации процессов, возникающих при воздействии радиоактивного излучения на вещество (ионизация газа, жидкости, твердых веществ, возбуждение световых вспышек в сцинтилляторах, поглощение, отражение и рассеяние излучения веществом). [c.199]


Смотреть страницы где упоминается термин Радиоактивные излучения химическое действие: [c.224]    [c.153]   
Общая химия (1984) -- [ c.407 , c.409 ]




ПОИСК





Смотрите так же термины и статьи:

Действие химическое

Радиоактивное излучение. 10. Действие радиоактивного излучения. 11. Механизм радиоактивности. 12. Скорость радиоактивного распада. 13. Энергия радиоактивного распада. 14. Радиоактивные ряды Химические элементы

Радиоактивные излучения

Химическое действие рентгеновских лучей и радиоактивных излучений



© 2025 chem21.info Реклама на сайте