Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие с неорганическими соединениями

    Органические вещества могут участвовать в протолитических, окислительно-восстановительных реакциях, а также реакциях осаждения и комплексообразования, что обусловлено химическими свойствами их функциональных групп. В связи с этим для количественного титриметрического анализа органических соединений используют в основном те же методы, что и для анализа неорганических соединений. Кроме того, для целей анализа используют реакции конденсации, замещения водорода, введения нитро- или нитрозо-групп, присоединения, свойственные органическим веществам. В некоторых случаях в процессе титрования сочетаются несколько типов взаимодействий, например окисление— восстановление, замещение водорода и присоединение, кислотно-основное взаимодействие и присоединение и т. п. [c.213]


    При реакциях нуклеофильного замещения в алифатическом ряду происходит взаимодействие органических соединений субстратов), у которых имеется дефицит электронной плотности на ато-.Vie углерода, связанном с электроноакцепторной группой X, с органическими или неорганическими соединениями или анионами, Y или Y (нуклеофильными реагентами), в состав которых входят один или несколько атомов с неподеленными парами электронов на внешней оболочке. [c.96]

    Характерным свойством перекисных соединений, как простых, так и комплексных, является способность образовывать перекись водорода при взаимодействии с разбавленными растворами кислот, а также выделять кислород в активной форме при термическом разложении или действии воды и других химических агентов. Другие неорганические соединения, которые могут быть источником кислорода, как, например, нитраты, хлораты, перхлораты, перманганаты и некоторые [c.344]

    Ионная (электровалентная, или гетерополярная) связь. С помощью ионной связи построено большинство неорганических соединений. Эта связь возникает между атомами, которые сильно отличаются по электроотрицательности. Процесс образования связи состоит в передаче электрона от одного атома к другому. Отдавая электрон, атом превращается в положительный ион — катион, а второй атом, приобретая этот электрон, переходит в отрицательно заряженную частицу — анион. Образовавшиеся противоположно заряженные ионы связываются силами электростатического взаимодействия. Схематически это можно представить так  [c.19]

    Калориметрический метод определения теплот сгорания в калориметрической бомбе первоначально был разработан применительно к органическим соединениям, подавляющее большинство которых экзотермически окисляется кислородом. Затем по мере развития калориметрии в течение последних десятилетий широкое распространение получил метод определения теплот взаимодействия неорганических соединений с кислородом и галогенами. Так, методом сожжения в атмосфере фтора под давлением были установлены стандартные термодинамические характеристики ряда фторидов, путем замещения хлора на кислород — теплоты образования некоторых оксидов, окси-хлоридов и хлоридов. Поэтому в настоящее время метод определения тепловых эффектов с помощью калориметрической бомбы можно считать инструментальным ме+годом неорганической химии. [c.18]


    Принцип метода. При взаимодействии неорганических соединений свинца с дитизоном образуется дитизонат, окрашенный в красный цвет, растворимый в хлороформе и четыреххлористом углероде. [c.242]

    Принцип метода. Метод основан на взаимодействии неорганических соединений свинца с сульфарсазеном и фотометрическом определении окрашенных в желто-оранжевый цвет растворов. [c.249]

    Вследствие того, что углеводородный радикал в магнийорганических соединениях носит анионоидный характер, эти соединения являются сильными основаниями и сильными нуклеофильными реагентами и поэтому взаимодействуют со многими органическими и неорганическими соединениями. С реактивами Гриньяра не реагируют лишь предельные углеводороды, простые эфиры, алкены с неактивированной кратной связью, третичные амины. [c.262]

    Таким образом, соли образуются при химическом взаимодействии неорганических соединений различных классов и простых веществ. [c.150]

    Принцип анализа. Определение основано на взаимодействии неорганических соединений свинца с сульфарсазеном с образованием соединения, окрашенного в красный цвет. Нижний предел обнаружения 1 мкг в анализируемом растворе, точность измерения 20%, измеряемые концентрации 0,00024— 0,0024 мг/мз. [c.68]

    Что делать в подобных, весьма многочисленных, случаях Как поступить, когда вопреки условию ЛС<0 попытки осуществления процесса оказываются безуспешными или недостаточно результативными Ответ один — все усилия надо направить на решение проблемы скорости, на преодоление кинетических трудностей реализации процесса. Надо при этом иметь в виду, что взаимодействие органических соединений обычно протекает медленнее взаимодействия неорганических веществ и редко доходит до состояния равновесия. [c.99]

    Несмотря на это гипотеза Авогадро не была принята его современниками. Сначала против нее решительно выступил Дальтон, а затем главной причиной ее непризнания стали выдвинутые Берцелиусом (1812 г.) представления о природе химического взаимодействия. Предвосхищая результаты некоторых гораздо более поздних исследований, Берцелиус считал, что в основе многих химических явлений лежат явления электрические. Реакцию соединения двух элементов он представлял себе как взаимное притяжение противоположно заряженных атомов. Атомы м еталлов, по Берцелиусу, имели избыток положительного заряда, атомы металлоидов — отрицательного. Исходя из этих представлений, нельзя было допустить возможности существования молекул, состоящих из одинаковых атомов. Гипотеза Авогадро не могла быть поэтому принята ранее крушения верной, в основном, для многих неорганических соединений электрохимической теории Берцелиуса. [c.21]

    Теоретические основы экстракции.- Экстракцией называется извлечение вещества из одной жидкой фазы в другую жидкую фазу. С водой не смешиваются малополярные органические жидкости (с низкой диэлектрической постоянной). Подавляющее большинство неорганических соединений, имея ионную природу, растворяется в них плохо. В водном растворе эти соединения диссоциируют на ионы, которые гидратируются молекулами воды. Переход соединения в органическую фазу становится возможным, если все или часть молекул воды, координированных ионом, будут удалены, и получен нейтральный комплекс. Образование нейтральных соединений и уменьшение степени гидратации наблюдается прн образовании солей с органическими кислотами, аминами (если металл входит в состав аниона), сольватов с нейтральными экстрагентами (спиртами, кетонами, простыми и сложными эфирами). При образовании сольватов молекулы экстрагента замещают молекулы воды в гидратной оболочке катиона либо присоединяются к воде гидратной оболочки. Такого рода взаимодействие возможно, если органические вещества содержат атомы кислорода, азота и других элементов, способных быть донорами электронов, а металлы — акцепторами. [c.332]

    При изложении раздела Электропроводность растворов необходимо отметить, что законы Вант-Гоффа и Рауля справедливы только для идеальных растворов, в которых не происходит химического взаимодействия между компонентами раствора, а также нет диссоциации или ассоциации молекул растворенного вещества. Опыт показывает, что не все растворы подчиняются этим законам. Установлено, что растворы солей, кислот и оснований, которые способны проводить электрический ток (так называемые электролиты), имеют более высокое, чем это следует по закону Вант-Гоффа, осмотическое давление, кипят при более высокой и замерзают при более низкой температурах, чем это можно ожидать из закона Рауля. В демонстрационном опыте 20 довольно полно рассматриваются явления электропроводности растворов различных органических и неорганических соединений. [c.55]


    Для неорганических соединений, когда константы спин-спинового взаимодействия очень велики (1000 Гц и более), проблема спиновой развязки встречает большие трудности. Требуемая мощность второго поля становится настолько велика, что может вызывать плавление или кипение образца. Перспективна здесь импульсная методика, которую полезно применять и по другим причинам. Она позволяет, например, раздельно получать эффекты изменения интенсивности и частоты или изменения интенсивности и спиновой развязки. [c.52]

    В настоящее время ЭПР — один из важнейших инструментальных методов неорганической и координационной химии. Он позволяет получить сведения о составе комплексных соединений в растворе, о термодинамике и кинетике реакций, о способе координации лиганда к центральному иону, о строении координационных соединений и характере связи металл — лиганд, о взаимодействии ионов в кристаллической решетке неорганических соединений. [c.203]

    Образование связи в неорганическом соединении происходит в результате взаимодействия (перекрывания) атомных орбит соединяющихся атомов, В результате перекрывания могут возникнуть не любые, а только некоторые, разрешенные комбинации атомных орбит. Полагают, что чем больше перекрывание атомных орбит (измеряемое интегралом перекрывания) (где и фв волновые функции взаимодействующих атомов, а —элемент объема), тем прочнее связь. [c.249]

    В природе идет непрерывный круговорот воды. Вода, испаряясь, поступает в атмосферу, а затем выпадает в осадки над океаном (65— 75%) и сушей (35—25%). Природная вода находится в непрерывном взаимодействии с окружающей средой. Она реагирует с атмосферой, почвой, растительностью, минералами и различными породами. При этом вода растворяет органические и неорганические соединения. Состав природных вод определяется характером этого взаимодействия. [c.343]

    В ходе органических реакций, как правило, друг с другом взаимодействуют два и более соединения. При этом более сложное соединение называют субстратом, а другое (обычно меньшее и часто относящееся к неорганическим соединениям)— реактивом или реагентом. Эти названия теряют смысл в том случае, когда реагируют два органических соединения примерно одинакового размера, потому что трудно различить, какое из них является субстратом, а какое — реагентом. [c.110]

    Таким образом, при гетеролитических реакциях органических соединений взаимодействуют друг с другом реакционные центры с противоположным зарядом, подобно тому как это происходит при ионных реакциях неорганических соединений. Подобная параллель может оказаться полезной при изучении органической химии, однако она таит в себе и определенную опасность грубой ошибкой было бы упрощенное представление, что обычная ковалентная связь действительно способна разрываться с образованием ощутимого количества ионов, подобных катионам и анионам в неорганической химии. [c.90]

    Настоящее пособие рассчитано на безмашинное обучение студентов. Сюда включены наиболее трудные и новые разделы курса химии (теория окислительно-восстановительных процессов, объяснение природы химического взаимодействия с привлечением метода молекулярных орбиталей и представлений об электроотрицательности и поляризации ионов и др.). Самостоятельными разделами представлены номенклатура неорганических соединений, правило фцз и элементы физико-химического анализа. Обзор свойств элементов дан с привлечением теоретических представлений. Пособие рассчитано на студентов нехимических специальностей вузов, преподавателей школ и лиц, самостоятельно изучающих соответствующие разделы общей и неорганической химии. [c.2]

    Программированное пособие по общей и неорганической химии совершенно новое по содержанию, оно включает такие сложные разделы, как современное содержание периодического закона и периодической системы элементов Менделеева, окислительновосстановительные реакции и потенциалы, основные типы химического взаимодействия, правило фаз и элементы физико-химического анализа, соединения, номенклатуру неорганических соединений и свойства химических элементов на примере 5- и /-элементов. [c.4]

    Возможен и обратный переход —от соли к другим классам неорганических соединений и простым веществам. Например, от сульфата меди путем его взаимодействия со щелочью можно перейти к гидроксилу меди (И), от него с помощью прокаливания — к оксиду меди (П), а из последнего посредством восстановления водородом при нагревании получить простое вещество медь  [c.137]

    Подобная связь между классами неорганических соединений, основанная на получении веществ одного класса из веществ другого класса, называется генетической. Однако следует иметь в виду, что часто получение веществ осуществляется не прямым, а косвенным путем. Например, гидроксид меди (И) нельзя получить реакцией взаимодействия оксида меди (П) с водой, так как в этом случае взаимодействие отсутствует. Тогда применяют косвенный путь на оксид меди (И) действуют кислотой, получают соль, а из соли действием раствора щелочи получают гидроксид меди (И). [c.137]

    Химическая связь в твердых неорганических веществах. В металлах и металлидах доминирует металлическая связь, хотя и в них немаловажную роль играет ковалентная составляющая связи. В твердых неорганических веществах, состоящих из одинаковых неметаллических атомов, господствующей межатомрой связью является ковалентная. При взаимодействии различных атомов с образованием твердого вещества природа межатомной связи имеет более сложный характер. Именно физико-химическая природа связи между неодинаковыми атомами представляет наибольший интерес, так как подавляющее большинство неорганических соединений образовано сочетанием разнородных атомов. [c.97]

    Если ионные (неорганические) соединения легко диссоциируют в воде на ионы и реакции между ними протекают весьма быстро, то органические вещества, содержащие простые (одинарные) С — Си С — Н связи, взаимодействуют между собой с большим трудом или вовсе не взаимодействуют. [c.272]

    Ионные кристаллические решетки характерны для большинства неорганических соединений. Они образованы правильно чередующимися в пространстве положительно и отрицательно заряженными ионами. Силы взаимодействия между ионами достаточно ве- [c.30]

    Окрашивание бесцветных пленок органическими красителями и неорганическими соединениями по реакции двойного обмена (см. методику, приведенную ниже) не позволяет получить светостойкую окраску, так как красители отлагаются лишь в верхней части пор. В связи с распространением строительных конструкций из сплавов алюминия, эксплуатипуемых и жестких условиях наружной атмосферы, проводят светостойкое окрашивание путем электрохимической обработки переменным током частотой 50 Гц. В катодный период происходит разряд присутствующих в растворе ионов с образованием мелкодисперсных частиц металлов и нерастворимых оксидов — в основном на дне пор. Окрашенные таким образом пленки наполняют растворами солей металлов (например, никеля), которые взаимодействуют с веществом пленки и образуют гидроксиды. Окрашивание непосредственно в процессе анодного оксидирования, происходящее, например, в электролитах № 3 и № 4 (см. табл. 13.1), связывают с включением в растущий оксид [c.83]

    Окрашивание неорганическими соединениями по реакции двойного обмена. Образцы обрабатывают последовательно в двух растворах, взаимодействие которых в порах пленки дает окрашенные трудпорастворимые соединения. В табл. 13.5 приведены составы некоторых растворов и получающаяся окраска. Образец погружают сначала в раствор № 1а, затем после промывки холодной водой, в раствор № 16 или соответственно в растворы № 2а н [c.87]

    Другой пример молекулы с делокализованными электронами — кристалл графита. Его атомы углерода также могут быть рассмотрены как находящиеся в ар--гибридизацпи и располагающиеся в одной плоскости. Каждый из атомов углерода связан с тремя ближайшими соседями а-связя.ми, а оставшиеся р-АО располагаются перпендикулярно плоскости и образуют гг-систему с делокализацией электронов по всей плоскости. По сравнению с бутадиеном графит уже можно рассматривать не как делокализацию э.лектронов в одном направлении (по цепочке), а как делокализацию сразу в плоскости. В силу большого числа взаимодействующих р-орбита лей, количество образуемых ими МО также велико. Энергетическое различие между ближайшими из таких МО невелико. Это объясняет непрозрачность и хорошую электропроводность графита. Среди неорганических соединений весьма часто встречаются плоские структуры, в которых также существуют тг-делокализованные связи. К ним, например, относятся трифторид бора, карбонат-ион, нитрат-ион, озон, триоксид серы и др.  [c.148]

    Существуют вещества, в кристаллах которых значительную роль играют несколько видов взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентными связями локализованного и делокализованного характера, а в других — межмолекулярной связью. Поэтому решетку графита можно рассматривать и как атомную, и как металлическую, и как молекулярную. Во многих неорганических соединениях, например, в ВеО, ZnS, u l, связь между частицами, находящимися в узлах решетки, является частично ионной и частично ковалентной решетки подобных соединений можно рассматривать как промежуточные между ионными и атомными. [c.161]

    ОСНОВАНИЯ НЕОРГАНИЧЕСКИЕ -класс неорганических соединений общей формулы Ме (0Н) , где Ме — металл, п — валентность металла. Общим свойством О. н. является то, что они в водных растворах диссоциируют на положительно заряженные ионы металлов и отрицательно заряженные ионы гидроксила ОН ". О. н., растворимые в воде, называют щелочами. О. н. образуются главным образом при взаимодействии соответствующих солей со щелочами, активных металлов с водой, основных оксидов с водой и др. Нерастворимые в воде О. н. получают реакцией обмена между растворимой солью данного металла и раствором щелочи. Число гидроксильных групп в О. и., которые способны замещаться кислотными остатками с образованием солей, определяют его кислотность. Например, КОН — однокислот- [c.184]

    Обычно указанные соединения рассматриваются как некоторые исключения из общего определения науки. Но проведем следующий мысленный эксперимент. Цианамид NHj N относят обычно к неорганическим соединениям если же ввести его во взаимодействие с гидразином, то образуется следующий триазоло-триазин [c.102]

    В пособии объединены традиционный практикум по неорганической химии и основы качественного полумикроанализа Первая часть содержит работы общего характера приготовление растворов, гомогенные и гетерогенные равновесия, комплексные соединения, окислительно-восстановительные взаимодействия. Во второй приведены работы по химии соединений наиболее важных неметаллически элементов, описываются качественные реакции отдельных анионов и систематический ход анализа. В третьей рассматриваются качественный анализ катионов и простейшие синтезы некоторых неорганических соединений. [c.296]

    Помимо воды, из неорганических соединений в жидком НР хорошо растворимы фториды, нитраты и сульфаты одновалентных металлов (и аммония), хуже — аналогичные соли Мд, Са, 8г и Ва, По рядам Ь1—Сз и Мд—Ва, т, е. по мере усиления металлического характера элемента, растворимость повышается. Щелочные и щелочноземельные соли других галоидов растворяются в НР с выделением соответствующего галоидоводорода. Соли тяжелых металлов в жидком НР, как правило, нерастворимы. Наиболее интересным исключением является Т1Р, растворимость которого исключительно велика (в весовом отношении около 6 1 при 12°С). Практически нерастворимы в жидком НР другие галондоводороды. Концентрированная серная кислота взаимодействует с ним по схеме + ЗНР НзО + НЗОдР + НР . Жидкий фтористый водород является лучшим из всех известных растворителем белков. [c.247]

    Основной массив объектов неорганической химии составляют многокомпонентные соединения (с числом компонеитов 3 и более), которые можно назвать слол<ными. Если бинарные соединения являются продуктами взаимодействия простых веществ, то сложные, в свою очередь, можно рассматривать как продукты взаимодействия бинарных соединений. Руководящим принципом при изучении эпгх объектов, как и ранее, являются природа химической связи, химическое и кристаллохнмическое строение и как следствие этого — свойства соединений. [c.79]

    Полимеризация соединений и мостиковые связи. В большинстве случаев твердые неорганические соединения являются полимерами, так как их кристаллы можно считать макромолекулами. В самом простом случае ионного соединения, например Na I, мы можем рассматривать кристалл как агрегацию очень большого количества отдельных пар ионов Ыа и С1, причем эти ионы взаимодействуют не только между собой, но и со всеми окружающими ионами, так как электростатическое взаимодействие не является направленным. [c.90]

    В других случаях цвет соединения определяется не только окрашенным ионом, но и его партнером (например, К2СГО4 желтого цвета, а Ag2 r04 — буро-красного). Наконец, известно много окрашенных соединений, образованных бесцветными ионами. Очевидно, что возникновение окраски в последнем случае может быть обусловлено только взаимодействием ионов. Какой-либо общей теории зависимости цвета неорганических соединений от их химического состава пока не существует, но очень часто появление окраски можно связать с наличием сильно выраженной деформации электронных оболочек. Несмотря на то что подобная деформация всегда является обоюдной, основное значение обычно имеет поляризация анионов катионами. Поэтому увеличение деформируемости аниона должно особенно благоприятствовать возникновению окраски.  [c.429]


Смотреть страницы где упоминается термин Взаимодействие с неорганическими соединениями: [c.161]    [c.224]    [c.9]    [c.109]    [c.258]    [c.475]    [c.132]    [c.324]    [c.190]   
Смотреть главы в:

Кремнеэлементоорганические соединения производные неогагенов -> Взаимодействие с неорганическими соединениями




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие пентафторида брома с неорганическими соединениями

Взаимодействие с различными неорганическими соединениями в неводных средах

Взаимодействие с солями и другими неорганическими соединениями

Межмолекулярные взаимодействия воды с неорганическими соединениями



© 2025 chem21.info Реклама на сайте