Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Совместное производство метанола и аммиака

    РИС. 6.12. Схема установки совместного производства метанола и аммиака  [c.213]

    На рис. 6.12 представлено отделение синтеза метанола по комбинированной схеме совместного производства метанола и аммиака. [c.212]

    При возможности использования в качестве дешевого сырья парафиновых углеводородов большего молекулярного веса, чем метан, и при возможности сочетания установки по производству ацетилена с установкой, производящей аммиак и метанол, можно применять процессы пиролиза типа СБА. Объединение установок, производящих и потребляющих ацетилен, с установками для получения аммиака и метанола, ведет при полном использовании промышленных мопщостей к повышению их экономичности. Для создания таких комбинатов требуются очень большие капитальные затраты в течение довольно короткого времени, а также наличие рынков сбыта для всех продуктов. При наличии дешевых парафиновых углеводородов тяжелее метана возможно применение процессов тина процесса Вульфа для производства одного ацетилена (или ацетилена и этилена), не связанного с производством аммиака или другими процессами. Для процесса Вульфа не требуются установки, разделяющие воздух, и, следовательно, отсутствует побочный продукт такого разделения — азот, а выход остаточного газа в результате использования большей его части для обогрева печи и парообразования снижается до минимума. Возможно проведение процесса в таком режиме, когда весь остаточный газ будет расходоваться в самом процессе для обогрева печи, парообразования и для газогенераторного привода компрессоров. Этим обеспечиваются минимальные энергетические затраты и не остается побочных продуктов для использования за пределами установки. Возможно использование установок типа Вульфа или Копперс-Хаше для совместного производства ацетилена и бытового газа. [c.188]


    Комбинирование нефтехимических производств эффективно в том случае, когда объединяются процессы, родственные с технологической точки зрения и основанные на комплексном использовании сырья. Например, комбинирование производства продуктов из этилена, пропилена, бутиленов, смолы пиролиза комбинирование производств ацетилена и аммиака или метанола комбинирование производства синтетического каучука и полибутилена при совместном производстве дивинила и бутилена и др. [c.94]

    При определении экономической эффективности комбинирования учитывают не только снижение затрат, но и повышение сложности управления предприятием и его организационной структуры. Комбинирование эффективно, если объединяют процессы, технологически родственные и основанные на комплексном использовании сырья, например производства продуктов из этилена, пропилена, бутиленов, смол пиролиза производства продуктов из ацетилена и аммиака и метанола производства синтетического каучука и метанола производства синтетического каучука и полибутилена при совместном получении дивинила и бутилена. Однако технико-экономические показатели резко ухудшаются при комбинировании разнохарактерных про- [c.31]

    В странах или районах, где ресурсы природного газа невелики или вообще отсутствуют, для производства аммиака и метанола часто применяют нафту — продукт нефтепереработки. Нафта, перерабатываемая на однолинейной установке мощностью 1360 т аммиака в сутки, представляет собой смесь, парафиновых (51—57%) и нафтеновых (26—33%) углеводородов с относительно невысоким содержанием ароматических углеводородов (6—17%). Содержание олефиновых углеводородов в нафте менее 0,1—0,2%, сернистых соединений еще меньше (0,01—0,03%). Присутствуют также (в мг/кг) хлориды— не более 1, мышьяк — 5, свинец —3, натрий и ванадий (совместно) — 5. Плотность нафты — 720—770 кг/м , температура конца выкипания 188—215°С. Отношение С Н в пределах 5,77—6,0. Молекулярная масса наф- [c.106]

    Все созданные на сегодняшний день совмещенные схемы работают по схо- eNn принципу. Так, японской фирмой Japan Gas hemi al разработан проект совместного производства аммиака и метанола [3], согласно которо.му из конвертированного газа вначале получают метанол. При этом за счет переработки оксида углерода концентрация СО в газе снижается. Далее остаточный оксид углерода окисляется кислородом воздуха и гидрируется до метана. Газовая смесь, очищенная от диоксида углерода, поступает на синтез аммиака. По схе- [c.211]


    На основе концепции энергетического анализа В.В.Кафаровым, В.А.Ивановым, Д.А.Бобровым и др. разработаны методы синтеза оптимально организованных реакторных подсистем в производствах аммиака и метанола. Предложен метод построения энерготехпологических диаграмм, позволяющий сочетать корректность решения с доступностью расчетных процедур. Научные разработки использованы при проектировании нового процесса совместного 1голучепия метанола и высших спиртов, используемых как компоненты моторных топлив. Получены эксергетические оценки и разработаны мероприятия, обеспечивающие практически полную рекуперацию энергии химических превращений, [c.13]

    В результате исследований, проведенных совместно с различными министерства.ми, были разработаны и уже внедряются в промышленность нестационарные методы окисления диоксида се1)ы в производстве серной кислоты, обезвреживания отходящих газов промышленных производств от оксида углерода и различных органических веществ, получения высокопотенциальной теплоты из слабоконцентрированных топлив и газов. Ведутся работы по синтезу метанола, аммиака, конверсии природного газа и оксида углерода, метанироианию, получению серы из сероводорода и другим процессам. Особенно интенсивно протекает внедрение нестационарных методов окисления на предприятиях цветной металлургии, где [c.260]

    Японская фирма Japan gas hemi al разработала проект совместного производства мета нола и аммиака [176]. Из конвертированного газа вначале получают метанол, при этом за счет переработки оксида углерода концентрация СО в газе снижается далее остаточный оксид углерода окисляется кислородом воздуха и гидрируется до метана. Газовая смесь, очищенная от диоксида углерода, поступает на синтез аммиака. [c.211]

    Перспективно использование коксового газа по схеме, предложенной Литвиненко и Носалевичем. Коксовый газ подвергают глубокому охлаждению и ректификации водород используют для синтеза аммиака. Последний применяют преимущественно в производстве карбамйда. Требуемую для этого двуокись углерода вымывают из коксового газа и продуктов горения. Метановую фракцию подвергают неполному окислению, получая ацетилен. Часть метана не окисляют, а получают из нее синильную кислоту путем совместного сжигания с аммиаком. Синильную кислоту и ацетилен используют в производстве акрилонитрила. Остаточный газ после получения ацетилена — хорошее сырье для синтеза метанола. Последний далее проводят в формальдегид, необходимый в производстве амино-пластов и фенопластов. Этилен коксового газа может быть использован для получения эталона, дихлорэтана, этилбензола и полиэтилена. [c.106]

    Для илл юстрации этого вида комбинирования на рис. 125 приводится примерная схема современного химического комбината, вырабатывающего на основе метана, пропилена и бензола полупродукты для производства синтетических смол. Окислительным пиролизом метана получают ацетилен и синтез-газ (стр. 439) последний частично конвертируется в водород (см. том I, стр. 269), направляемый на синтез аммиака, а из двуокиси углерода, образующейся при конверсии, получают взаимодействием с аммиаком карбамид (см. том I, стр. 464). Остальной синтез-газ направляют на синтез метанола, значительная часть которого перерабатывается на формальдегид. Совместным каталитическим окислением аммиака и метана получается синильная кислота (стр. 366), образующая с ацетиленом акрилонитрил. Из пропилена и бензола синтезируют изопропилбензол, перерабатываемый на фенол и ацетон (стр. 503). Вместе с синильной кислотой и метанолом часть ацетона используется в синтезе метилметакрилата, другая часть— в синтезе уксусной кислоты через кетен (стр. 451). Из уксусной кислоты и ацетилена получают винилацетат. Наконец, остальной ацетилен путем гидрохлорирования превращают в хлористый винил (стр. 409). На приведенной схеме показано также, какие полимерные материалы могут быть получены из вырабатываемых полупродуктов. [c.330]

    Новая отрасль промышленности органического синтеза — нефтехимический синтез — возникла в нашей стране практически в последние 15 — 20 лет начало ей было положено организацией в 1949 г. совместного производства фенола и ацетона по кумольному методу, а также созданием в 1952 г. производства синтетического спирта по методу сернокислотной, а затем прямой гидратации этилена. В короткие сроки были освоены производства большинства важнейших других нефтехимических продуктов полиэтилена и полипропилена, полиизопренового и полидивиниль-ного синтетического каучука, сырья для производства химических волокон (нитрона, лавсана и др.) на базе переработки природного газа получило дальнейшее развитие производство аммиака и мочевины, метанола и формальдегида. Бурный рост отечественной нефтехимической про--мышленности обеспечил СССР второе место в мире по объему производства химической продукции из нефтяного сырья [109]. [c.5]



Смотреть страницы где упоминается термин Совместное производство метанола и аммиака: [c.269]    [c.354]    [c.91]    [c.376]    [c.495]   
Смотреть главы в:

Технология синтетического метанола -> Совместное производство метанола и аммиака




ПОИСК





Смотрите так же термины и статьи:

Метанол, производство

Производство аммиака



© 2025 chem21.info Реклама на сайте