Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесные электрооптические свойства жесткоцепных полимеров в растворах

    Большой экспериментальный материал по молекулярной гидродинамике и оптике растворов полимеров позволяет разделять полимеры на гибкоцепные и жесткоцепные в зависимости от проявляемых ими гидродинамических и электрооптических свойств в разбавленных растворах [6, 7]. При этом основным критерием для такого разделения является величина равновесной жесткости, молекулярных цепей, которая характеризует среднюю конформацию макромолекулы — ее размеры и геометрическую форму, принимаемые в растворе в равновесном состоянии. Количественной мерой равновесной жесткости (гибкости) макромолекул может служить длина статистического сегмента Куна А [8] или числс мономерных звеньев в сегменте 5=Л/Я (где К — длина мономерного звена в направлении основной цепи), а также персистентная длина а=/4/2 червеобразной цепи [9], моделирующей макромолекулу. Для подавляющего большинства гибкоцепных полимеров-длина сегмента Куна лежит в интервале 15—30 А [10, 11]. Напротив, у жесткоцепных полимеров А может составлять сотни и тысячи ангстрем [12]. Многие важнейшие свойства полимерных материалов (такие, как возможность кристаллизации, температура стеклования, релаксация механических и электрических свойств и ряд других) существенно зависят не только от равновесной, но также и от кинетической жесткости полимерных молекул. Понятие кинетической гибкости не столь универсально, как равновесной. Кинетическая гибкость, характеризуя кинетику деформации и ориентацию макромолекулы под действием внешнего поля, определяется характером и продолжительностью действия приложенного поля и, следовательно, рассматриваемым физическим процессом. Сведения о кинетической гибкости получают путем исследования скорости протекания процессов, в которых макромолекула переходит из одной конформации в другую. Поэтому мерой кинетической жесткости макромолекулы может служить время, необходимое для изменения конформации цепи под дей ствием внешнего воздействия. Вопрос о соотношении равновесной и кинетической гибкости полимерной цепи является фундаментальной проблемой молекулярной физики полимеров. Количественные сведения о равновесной и кинетической (проявляющейся под действием электрического поля) гибкости цепных молекул могут быть получены при исследовании их электрооптических свойств в разбавленных растворах. [c.35]


    Поскольку основным механизмом поляризации растворов жесткоцепных полимеров является вращение их полярных макромолекул как целого, то для количественного описания их равновесных электрооптических свойств решающее значение имеет суммарный дипольный момент fx молекулы. Последний является геометрической суммой моментов всех полярных связей, жестко связанных с основной цепью молекулы, а потому может быть вычислен по формулам, аналогичным выражению (1) для среднего квадрата расстояния между концами цени h . [c.148]

    Совершенно другие электрооптические свойства характерны для жесткоцепных полимеров. Эксперименты показывают, что цепные молекулы, равновесная жесткость которых достаточно велика (большая длина сегмента Куна), имеют также большую кинетическую жесткость (большое время деформации т ). Поэтому жесткоцепные молекулы в электрическом поле ориентируются как целое (ориентационный механизм, характеристическое время то), а равновесные характеристики и кинетика процессов ДП и ДЛЭ в растворах этих молекул отражают их днпольные, оптические и гидродинамические свойства. [c.82]

    Одним из первых полимеров с высокой равновесной жесткостью основной цепи, для молекул которого были получены количественные конформационные и структурные характеристики, был синтетический полипептид поли-у-бензил-Ь-глутамат (ПБГ) [41]. Было установлено, что в растворителях, в которых сохраняется вторичная структура а-спирали [42], форма молекул ПБГ в растворе с ростом молекулярной массы изменяется от палочкообразной до гауссового клубка [43—45]. Моделируя макромолекулу ПБГ червеобразной цепью [9] и используя гидродинамические теории персистентных цепей, нашли равновесную жесткость цепей ПБГ (а = 500 А) и ш г спирали >. = 2,2 А. Изучение ЭДЛ в растворах ПБГ в смешанных растворителях (дихлорэтан — дихлоруксусная кислота) показало [46], что увеличение доли деспира-лизующего компонента (дихлоруксусной кислоты), приводящее к конформационному переходу спираль — клубок [47, 48], в результате которого ПБГ становится типичным гибкоцепным полимером с равновесной жесткостью а 10 А, существенно изменяет электрооптические свойства растворов ПБГ. Экспериментальные данные (рис. 1 и 2) наглядно демонстрируют на примере одного и того же образца ПБГ весьма различные электрооптические эффекты в растворах жесткоцепного и гибкоцепного полимеров. Значения К, полученные для растворов ПБГ в дихлоруксусной кислоте, на четыре порядка меньше постоянных Керра для того же полимера в дихлорэтане (рис. 1). С другой стороны, для растворов ПБГ в дихлорэтане характерно наличие релаксационных явлений (рис. 2,а), тогда как в дихлоруксусной кислоте они практически не проявляются (рис. 2,6). [c.37]



Смотреть страницы где упоминается термин Равновесные электрооптические свойства жесткоцепных полимеров в растворах: [c.85]   
Смотреть главы в:

Жидкокристаллический порядок в полимерах -> Равновесные электрооптические свойства жесткоцепных полимеров в растворах

Жидкокристаллический порядок в полимерах -> Равновесные электрооптические свойства жесткоцепных полимеров в растворах




ПОИСК





Смотрите так же термины и статьи:

Полимеры равновесность

Растворов полимеров свойства

Растворов свойства

Растворы полимеров



© 2025 chem21.info Реклама на сайте