Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформационный переход в макромолекуле

    Возможность конформационных переходов макромолекул предопределяется их гибкостью. Различают понятия термодинамической и кинетической гибкости полимерной цепи. [c.80]

    Связь Уф с термодинамикой конформационных переходов макромолекул будет рассмотрена в разд. 2.4. [c.88]

    Растворы полимеров, в которых взаимодействием сольвати-рованных полимерных цепей можно пренебречь, называются разбавленными. На рис. 2.4 приведена схема, иллюстрирующая возможность конформационных переходов макромолекул в растворе размеры звеньев и молекул растворителя условно приняты одинаковыми. Изменение конформации полимерной цепи становится возможным в том случае, когда имеется соответствующая дырка в структуре растворителя, находящаяся в пределах досягаемости звена полимера. [c.101]


    Конформационные переходы макромолекул коллагена (или желатины) приводят к изменению величины оптической активности растворов  [c.382]

    Изменение невозмущенных размеров при повышении температуры или под влиянием различных растворителей связывают либо с изменением потенциальной энергии вращения вокруг основных связей (эффект близкодействия) при монотонном изменении [rj] или (/il) / , либо с конформационными переходами макромолекул в растворе при резком изменении невозмущенных размеров (см., например, [91, 96, 97]). [c.189]

    РЕЛАКСАЦИЯ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ И КОНФОРМАЦИОННЫЕ ПЕРЕХОДЫ МАКРОМОЛЕКУЛ НА ПОВЕРХНОСТИ РАЗДЕЛА ФАЗ [c.186]

    Конформационные превращения — основа развития высокоэластических деформаций. Однако деформация в значительной степени зависит также от плотности флуктуационной сетки, которая в свою очередь определяется скоростью деформации. С изменением плотности флуктуационной сетки меняется эффективная длина участков цепей между соседними микроблоками или зацеплениями. При сдвиговом течении вследствие различия скоростей перемещения отдельных слоев жидкости внешнее усилие в виде напряжения сдвига передается через проходные участки макромолекул, в результате чего они начинают ориентироваться. Под действием этих же сил путем последовательного движения звенья цепи выходят из микроблоков, т. е. узлы флуктуационной сетки разрушаются и увеличивается средняя длина проходных участков, которые являются основным источником накопления мгновенной упругой и высокоэластической деформации. Разрушение узлов флуктуационной сетки измеряется числом элементарных переходов звеньев из одного положения в другое, следовательно, этот процесс протекает во времени. Поэтому чем больше плотность флуктуационной сетки в начале развития деформации, тем больше время запаздывания и наоборот при переходе от ориентированного состояния к равновесному время релаксации меняется в зависимости от степени ориентации цепи и способности макромолекул к образованию новых узлов флуктуационной сетки. Поскольку все конформационные переходы макромолекул взаимосвязаны, они зависят от межмолекулярного взаимодействия и гибкости цепи, а следовательно, в значительной степени определяются температурой. С изменением температуры весь релаксационный спектр смещается и деформируется. [c.57]


    Из предыдущих разделов известно, что скорость сдвига, как правило, меняется по глубине канала, поэтому напряжения сдвига будут также различными. При релаксации такой неоднородной системы конформационные переходы макромолекул задерживаются соседними и количественно зависят от плотности узлов флуктуационной сетки. При пространственной флуктуации отдельных напряженных (ориентированных) участков макромолекул в них создаются напряжения, под действием которых происходит перемещение звеньев и узлов флуктуационной сетки, т. е. процесс релаксационных переходов удлиняется во времени с ростом плотности флуктуационной сетки. [c.60]

    Как уже упоминалось выше, в области малых значений молекулярной массы последняя влияет на температуру стеклования полимера. Это объясняется увеличением свободного объема полимера, содержащего короткие цепи, поскольку их концы препятствуют плотной упаковке макромолекул. Избыточный свободный объем низкомолекулярного полимера приводит к тому, что конформационные переходы макромолекул могут осуществляться при более низких температурах по сравнению с полимером большей молекулярной массы. [c.153]

    Небольшие изменения температуры обычно не отражаются на спектрах поглощения. При спектрофотометрическом изучении кинетики и равновесия некоторых химических процессов, при исследовании конформационных переходов в макромолекулах и некоторых других физико-химических процессов необходимо термостати- [c.17]

    По всей видимости, следует считать, что собственно высокомолекулярное соединение начинается только с того момента, когда отчетливо проявляется способность макромолекул к разнообразным обратимым конформационным переходам, причем эти переходы могут быть описаны вероятностными функциями. [c.80]

    Возможность конформационных переходов изолированной макромолекулы определяется высотой потенциального энергетического барьера Щ, препятствующего свободному вращению звеньев, атомных групп вокруг направления соединяющих их валентных связей. [c.81]

    Термодинамическая гибкость макромолекул может быть оценена как для изолированной цепи, так и для цепи, находящейся в окружении других молекул (молекул растворителя, соседних цепей). Проявление способности к конформационным переходам в первом случае обусловлено только внутрицепным взаимодействием, т.е. величиной потенциального энергетического барьера В этом случае гибкость макромолекул определяется как скелетная . [c.88]

    Сольватационное взаимодействие макромолекул и молекул растворителя существенно изменяет способность полимерных цепей к конформационным переходам, т.е. влияет на их равновесную гибкость. По величине термодинамического сродства к полимеру все растворители делятся на хорошие и плохие . Для термодинамически хороших растворителей характерно образование достаточно мощных сольватных оболочек вокруг макромолекул, что существенно уменьшает возможность их конформационных переходов, т.е. обусловливает снижение равновесной гибкости. [c.92]

    Ранее отмечалось, что расчетные размеры молекулярных клубков меньше реальных. Это связано с фактическими ограничениями свободы конформационных переходов потенциальным барьером i/q- Дополнительные ограничения в изменении формы макромолекул возникают в результате взаимодействия полимера с растворителем. [c.107]

    Четкие различия в химических и физико-химических свойствах фиброина и серицина отсутствуют. Фиброин имеет М = (2,5+3,8) 10 , а серицин - 1,6 10 + 3,1 10 Макромолекулы фиброина и серицина характеризуются конформационной неоднородностью полимерная цепь может последовательно включать а-спиральные и -структурные участки, причем их соотношение определяется наличием воды. В условиях высокой подвижности макромолекул (в растворе, в набухшем состоянии) возможны обратимые конформационные переходы а-спираль клубок -структура. а-Спираль построена из повторяющихся аминокислотных звеньев, отличающихся боковыми заместителями. Линейное расстояние вдоль оси спирали между двумя однородными атомами (шаг спирали) составляет 1,5 А. Угол между перпендикуляром к оси спирали и плоскостью, занимаемой аминокислотными звеньями, равен 26°. Один виток спирали включает 3,6 аминокислотных остатка. Это соответствует линейному расстоянию вдоль оси спирали, равному 5,4 А.  [c.375]

    Равновесная гибкость макромолекул - способность к конформационным переходам цепи, окруженной другими молекулами (соседние макромолекулы, молекулы растворителя и т. п.). [c.404]

    Сегмент макромолекулы - статистический элемент гипотетической цепи, адекватно моделирующий способность реальной макромолекулы к конформационным переходам в результате теплового движения (статистический сегмент) или под,влиянием внешних энергетических полей (кинетический сегмент). [c.404]

    Скелетная гибкость макромолекул - способность к конформационным переходам изолированной цепи. В изотермических условиях зависит только от химического строения макромолекулы. Определяется высотой потенциального барьера, препятствующего свободному вращению звеньев. [c.404]


    Термодинамическая гибкость - способность макромолекулы к конформационным переходам в термодинамически равновесном состоянии под влиянием бесконечно медленных тепловых воздействий. [c.406]

    Поэтому зависимость Гпл от прилагаемого напряжения имеет вид, изображенный на рис. VI. 24, а. Зависимость эта имеет немонотонный характер, если макромолекулы претерпевают конформационный переход типа спираль — клубок, в результате которого их гибкость увеличивается (рис. VI. 24, б). Напротив, в силу причин, которые должны быть читателю очевидны, при растяжении ориентированного полимера в направлении, перпендикулярном оси ориентации, 7пл убывает с напряжением, как это показано на рис. VI. 24, в. [c.225]

    В некоторых случаях ионизация полиэлектролита в определенном интервале а может сопровождаться кооперативным конформационным переходом молекулярных цепей, т. е. достаточно резким изменением формы макромолекул в растворе. Тогда величина А<3эл включает в себя не только электростатическую составляющую энергии Гиббса полиэлектролита, но и энергию конформационного перехода. Если конформационный переход происходит в достаточно узком интервале значений pH (или а), то эти две составляющие удается разделить и из кривых потенциометрического титрования определить термодинамические параметры соответствующего конформационного перехода. [c.118]

    Характерной особенностью конформационных переходов в белках является их так называемая кооперативность. Это значит, что конформационное изменение в одном из сегментов макромолекулы вызывает аналогичные конформационные изменения соседних сегментов и в итоге всей макромолекулы в целом. Кооперативные превращения идут с малой затратой энергии они имеют огромное значение в биохимических процессах. [c.345]

    Протяженность блоков сопряжения и расстояние между ними зависят от метода синтеза полимера с сопряженной системой связей, его химического строения, конформационной устойчивости макромолекул, энергии межмолекулярных взаимодействий и от физической структуры полимера. Все факторы, приводящие к нарушению копланарности, снижают степень делокализации электронов и ухудшают свойства полимеров, обусловленные системой сопряжения. Кристаллизация, если она не связана с изменением конформации молекул и нарушением копланарности, приводит к улучшению в первую очередь полупроводниковых свойств, так как переход электронов от одной молекулы к другой облегчается упорядоченным расположением макромолекул в полимере. [c.410]

    В результате конформационных изменений макромолекулы могут либо свертываться, образуя глобулы и статистические клубки, либо выпрямляться и укладываться в ориентированные структуры— пачки. Легкость перехода зависит от термодинамической и кинетической гибкости цепей. Первая определяется разностью энергий двух конформаций AU, рис. 121), вторая — высотой [c.306]

    Следует уточнить, в чем, с нашей точки зрения, проявляется химическая сторона эффекта дальнего порядка. Само по себе явление скручивания макромолекулы за счет конформационных переходов и увеличение концентрации фрагментов цепи в окрестности функциональной группы является чисто физическим процессом, который можно количественно охарактеризовать с помощью величины эффективной локальной концентрации. Однако этот физический процесс приводит к увеличению вероятности взаимодействия функциональной группы с фрагментом, расположенным далеко от нее по цепи. Такого рода взаимодействие (водородная, ионная, донорно-акцепторная связь и т.д.) имеет химическую природу и, поскольку именно оно является причиной изменения активности концевой группы, эффект дальнего порядка можно рассматривать как химический фактор. [c.56]

    Гидрофобные взаимодействия проявляются только в водных средах и обусловливаются способностью неполярных молекул образовывать между собой прочные ассоциаты в процессе мицелл ообразования. Этим предопределяются возможность возникновения би- и многослойных биологических мембран, а также реализация конформационных переходов макромолекул белков и др. [c.347]

    Конформационные переходы макромолекул желатины легко проследить по изменению оптического вращения [91]. Для коллагена и желатины упорядоченное состояние молекул соответствует более высоким отрицательным значениям оптического вращения, тогда как неупорядоченное характеризуется меньшей величиной левовращения. Процесс образования макромолекул с упорядоченными структурированными участками в растворах желатины происходит во времени, что позволяет изучать кинетику этого перехода  [c.66]

    Гибкость макромолекул, для которых к < Ю нм, проявляется преимушественно как поворотная изомерия (ротамерия). Для полимеров с к > 40 нм конформационные переходы реализуются в результате суммирования малых колебаний валентных углов и углов внутреннего врашения. [c.88]

    В присутствии соседних молекул гибкость макромолекул Офаничивается межмолекулярными и межцепными взаимодействиями. В этом случае способность макромолекул к конформационным переходам определяется как равновесная . [c.88]

    Макромолекулы целлюлозы относятся к полужесткоцепным образованиям. Способность к конформационным переходам обусловливается возможность вращения пиранозных циклов вокруг глюкозидных связей. Скелетная гибкость полимерных [c.290]

    Планарность этой связи и возможность возникновения диполя обусловливают ее жесткость. Жесткая пептидная связь существенно офаничивает возможность конформационных переходов в макромолекуле. Боковые радикалы аминокислотных звеньев создают дополнительные стерические затруднения для конформационных переходов. Звенья Gly лищены бокового радикала и не проявляют асимметрии при С -атоме. В связи с этим данные звенья в полипептидной цепи ифают роль своеобразного шарнира, позволяя остаткам Gly обеспечивать возможность конформационных переходов. Однако содержание Gly в полимерных цепях офаничено его избыток привел бы к резкому возрастанию гибкости макромолекул. Важной особенностью строения полипептидной цепи является тот факт, что все полярные и неполярные боковые радикалы отделены от С -атома Фуппой СН2, что обеспечивает увеличение конформационных возможностей полимерной цепи. Остов полимерной цепи образует цепочка атомов [c.341]

    Облегчение конформационных переходов при увлажнении полимерного субстрата обусловливает усиление тенденции к развертыванию глобулизирован-ных участков белковой макромолекулы вследствие ослабления (из-за гидратации) внутрицепных взаимодействий. Это приводит к самопроизвольному удлинению волокна при увеличении его влажности свыше 5-7%. Равновесное влагопоглощение кератиновых волокон при 25 °С достигается через 2-3 мин. Поэтому при изменении влажности воздуха соответственно достаточно быстро изменяется влагосодержание волоса и, как результат, происходит определенное изменение его длины (усадка или удлинение). [c.380]

    Скорость протекания конформационных переходов зависит от концентрации и молекулярной массы белка. В результате ассоциации полипептидных цепей в растворах возникают тройные спирали. Такое самоупорядочение макромолекул в растворе протекает наиболее эффективно вблизи изоэлектрической точки. [c.382]

    При малых п, сопоставимых с , число возможных конформаций макромолекулы относительно мало. Это мешает ей принять наиболее вероятную конформацию большой молекулы — клубка, подобного изображенному на рис. I. 8. Но из этого вовсе не следует, как нередко утверждается, что с уменьшением степени полимеризации растет жесткость. Это — одна из издержек конформационных оценок гибкости. В действительности уменьшается не гибкость, а статистический вес, или конформационная энтропия макромолекулы (иногда говорят об уменьшении конформационного набора , представляющего собой тот же статистический вес, связанный с энтропией формулой Больцмана 5 = й1пй7). Гибкость же, выражаемая в абсолютных единицах /, а или Г, остается неизменной. Тем не менее обеднение конформационного набора сказывается при переходе полимера в конденсированное состояние. [c.41]

    Динамическая структура белковых макромолекул ферментов, постулированная Ламри, Линдерштром-Лангом и Кошландом, которая проявляется в локальной тепловой подвижности отдельных участков и в способности к индуцированным конформационным переходам, играет первостепенную роль в реализации таких функ- [c.188]

    Динамическая структура белковых макромолекул ферментов, постулированная Ламри, Линдерштром-Лангом и Кошландом, которая проявляется в локальной тепловой подвижности отдельных участков и в способности к индуцированным конформационным переходам, играет первостепенную роль в реализации таких функционально важных свойств ферментов, как динамическая адаптация формы фермента к структуре каталитических и субстратных групп, меняющаяся в процессе химической реакции, аллостерическое взаимодействие между пространственно разобщенными центрами, реализация принципа компле-ментарности свободных энергий (по Ламри) и индуцированного соответствия (по Кошланду). [c.242]

    Небольшие изменения температуры в лаборатории не отражаются на спектрах поглощения. Тщательное термо-статирование кювет необходимо при спектрофотометрическом изучении кинетики и равновесия некоторых химических процессов, при исследовании конформационных переходов в макромолекулах и некоторых других физикохимических процессов. При повышенных температурах на внутренних поверхностях кювет появляются пузырьки воздуха, которые искажают измеряемое оптическое поглощение. Необходимо также учитывать испарение растворителя, которое приводит к повышению концентрации раствора. Испарение можно уменьшить, используя кюветы с пришлифованными тефлоновыми пробками. [c.18]

    Для осуществления конформационных переходов необходимо преодолеть не только потенциальный барьер вращения звеньев макромолекулы С/о. но и межмолекулярное взаимодействие, которое в конденсированном состоянии довольно существенно н может быть оценено энергией когезии. Поскольку уровень межмолскулярного взаимодействия определяется не только химическим строением макромолекулы, но и надмолекулярной структурой, то и кинетическая гибкость зависит от структуры полимера на молекулярном и надмолекулярном уровнях. [c.100]

    О том, что взаимодействие макромолекул целлюлозы в ее аморфных областях с молекулами воды является преобладающим, свидетельствует экзотермичность взаимодействия целлюлозы с водой [79]. Принимая, что в крахмале все ОН-группы доступны для воды, был рассчитан тепловой эффект присоединения 1 моль воды к группе ОН, он составил - 7,1 кДж [80]. Термодинамическое изучение взаимодействия воды с аморфной целлюлозой [81] показало, что при пониженном содержании воды взаимодействие сопровождается изменением как энтальпии, так и энтропии системы. Парциальная энтропия аморфных областей целлюлозы возрастает, а парциальная энтальпия воды уменьшается. Это обусловлено упорядочиванием молекул воды и разупоря-дочиванием сегментов целлюлозы при взаимодействии. При увеличении содержания воды упорядочивание молекул воды в системе уменьшается, а упорядочивание сегментов целлюлозы увеличивается, т.е. энтальпия возрастает по абсолютному значению, и ее вклад в свободную энергию образующейся системы становится преобладающим. Адсорбированная вода, ослабляя систему водородных связей в доступных областях целлюлозы, оказывает пластифицирующее действие на целлюлозу [76, 82], приводит к расстекловыванию аморфных областей и переводу полимера в высокоэластическое состояние благодаря возрастанию сегментальной подвижности, увеличению свободного объема, появлению свободных от водородных связей функциональных групп. Можно предполагать, что при расстекловывании становятся возможными и конформационные переходы элементарных звеньев целлюлозы, понижается энергия активации свободных ОН-групп. При этом вероятно повышение кислотности свободных от водородных связей гидроксилов [83]. Изменение сегментальной подвижности в присутствии воды происходит за счет индукционных эффектов при образовании водородных связей вода-целлюлоза с делокализацией электронной плотности [84]. Расчеты квантово-химическим полуэмпиричес-ким методом ППДП комплексов целлобиозы с водой и другими растворителями подтвердили [85], что при их взаимодействии атомы кислорода как целлобиозы, так и воды, участвующие в образовании водородной связи, получают дополнительный отрицательный заряд по сравнению с тем, который они имели до взаимодействия. Это закономерный результат переноса заряда при образовании комплекса. Установлено также, что возможно взаимодействие молекул воды не [c.379]


Смотреть страницы где упоминается термин Конформационный переход в макромолекуле: [c.24]    [c.24]    [c.201]    [c.51]    [c.345]    [c.119]    [c.119]    [c.161]   
Физика полимеров (1990) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные

Конформационные переходы



© 2025 chem21.info Реклама на сайте