Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесно при высоких давлениях

    Реакция непосредственного превращения олефинов в спирт является равновесной, протеканию реакции способствуют низкая температура, высокое давление и высокое соотношение пар оле-фины  [c.61]

    В книге кратко описаны методы расчета некоторых параметров фазовых переходов, наиболее существенных для термодинамики химических реакций, в частности процессов перехода из жидкого или кристаллического состояний в состояние идеального газа и обратно при равновесных или при стандартных условиях. Однако автор не затрагивал свойств растворов и методов их расчета, а также специфических особенностей расчетов для области высоких давлений, так как это потребовало бы значительного увеличения объема книги. По тем же причинам не рассмотрены реакции образования комплексных соединений и методы статистической термодинамики, но описаны некоторые методы практического расчета термодинамических функций, основанные на выводах статистической термодинамики. [c.7]


    Для высоких давлений эти модели дают идентичные результаты. Они будут отличаться в таких условиях, когда распределение внутренней энергии Р Е) и Р(Е ,. . . , а) уже не будет равновесным. [c.201]

    При высоком давлении, когда молекулы имеют равновесное термическое распределение энергии, можно использовать квантовомеханическую функцию распределения для Р Е) [см. уравнение (XI.6.1)1  [c.220]

    В периоды остановки равновесный катализатор подается в бункеры 21 по линии 23. Трубопровод 24 служит для вывода катализатора из регенератора. По линии 25 перегретый водяной пар поступает в паропроводную сеть высокого давления. В эжектор 26 подается водяной пар давлением 4 ат. [c.276]

    Точка е отвечает наивысшему давлению, которым может обладать насыщенный пар, состоящий из компонентов А и В, приданной температуре. При более высоких давлениях равновесны лишь конденсированные системы, которые при давлениях и концентрациях, отвечающих области dd, распадаются на две жидкие фазы. [c.402]

    Гидрирование и деструктивное гидрирование — реакции второго порядка под высокими давлениями водорода равновесные выходы сдвигаются в сторону образования насыщенных соединений, и гидрирование идет практически до конца. [c.141]

    При умеренной степени пересыщения пузырьки не образуются, и газ десорбируется в результате диффузии к уже существующей поверхности, как это происходит и при абсорбции. Здесь снова следует отметить, что в настоящее время нет способа предсказать максимально допустимую степень пересыщения, при которой не происходит образования пузырьков. Однако, ясно, что, когда величина парциального давления, равновесного с массой жидкости, станет ниже общего давления у поверхности, образования пузырьков уже не будет (при относительно высоком давлении пара над жидкостью это условие следует отнести к сумме парциального давления газа, равновесного с массой жидкости, и давления пара над жидкостью). При этих условиях дальнейшая десорбция будет происходить лишь путем диффузии к обычной поверхности, определяемой внешними [c.264]

    Следует отметить, что в изолированной системе могут протекать только самопроизвольные процессы, которые приводят неравновесную систему в равновесное состояние. Равновесная система не может самопроизвольно выйти из этого состояния. Например, газ не может самопроизвольно подвергаться сжатию от равновесного до более высокого давления. Это определяется тем, что равновесное состояние газа в заданном объеме является наиболее вероятным, а отклонения от равновесия в макрообъеме маловероятным процессом. В то же время в открытой системе процессы могут проходить с различными по величине флуктуациями, и эти флуктуации не могут обеспечить переход к равновесию. В открытых системах действует закон одновременного и непрерывного протекания самопроизвольных и несамопроизвольных процессов. [c.10]


    Нельзя не отметить сильное влияние давления на равновесную степень превращения. Проведение процесса при высоких давлениях позволяет повысить степень превращения и довести ее до 90%. [c.250]

    Повышение давления мало сказывается на равновесности высокотемпературного риформинга, которое сдвигается влево. Однако обычно газификацию ведут под высоким давлением, тем самым снижая габаритные размеры газогенератора и получая генераторный газ под давлением. [c.93]

    В связи с развитием процессов гидроочистки — гидрокрекинга высокомолекулярных фракций нефти и угля изучено [64, 67] равновесие при высоких давлениях реакций гидрирования би- и полициклических ароматических. Зависимость 1 /С°р от 1/7 для ряда таких реакций дана на рис. 31. Учитывая неидеальность системы, по данным рис. 31 определили составы равновесной смеси. На рис. 32,. [c.307]

    Последнее уравнение удобно для оценки общей возможной конверсии при синтезе углеводородов. Например, по соотноше- нию, приведенному выше, для синтеза парафиновых и нафтеновых углеводородов найдем, что при 600 К стандартная константа равновесия Я°р = 46,4. Если р = р°=101325 Па и 6 = 2, то этому значению К°р отвечает л = 0,8. Если же р1р° =50, то равновесная конверсия СО в углеводороды будет близка к 0,95, т. е. можно получить практически полное превращение одного из реагентов, применяя умеренные температуры и высокие давления. При относительно низких температурах ( 500 К) практически полное превращение может быть достигнуто и при. атмосферном давлении. Подчеркнем, что последнее соотношение и расчеты учитывают превращение СО и Нг во все образующиеся углеводороды. [c.337]

    Вакуум в печи создается специально как способ для осуществления некоторых термотехнологических процессов, которые невозможно провести в плотной газовой среде, или как средство для защиты во время их получения или термической обработки. В вакууме взаимодействие металла с внешней газовой средой замедляется и практически прекращается при достижении глубокого вакуума. Снижение внешнего давления над металлом благоприятствует выделению из расплава растворенных газов и устраняет возможность окисления металлов. В особо благоприятных условиях становится возможным восстановление металлов и оксидов. Например, в обычных условиях при атмосферном давлении процесс восстановления оксида магния углеродом не протекает, но становится возможным в вакууме. При наличии восстановителя в разреженном пространстве оксид магния становится непрочным соединением. Равновесие взаимодействия углерода с оксидом магния смещается в сторону образования элементарного магния MgO + С Mg (г.) + СО (г.). Причиной этого является высокое давление насыщенных паров магния, вследствие чего в глубоком вакууме он находится в парообразном состоянии и постоянно выводится из равновесного состояния отсасывающей системой, что способствует распаду MgO. [c.78]

    Ряд гидрогенизационных синтезов при обычных условиях отличается малыми значениями равновесного выхода продукта. Такие синтезы осуществляют в заводских условиях при повышенных и высоких давлениях 20—40 атъ производстве синтина, 200—250 ат прн синтезе метанола на цинк-хромовом катализаторе, 200—800 ат ирп синтезе аммиака на железном катализаторе и т. д. Однако и применение давления позволяет повысить фактическую степень превращения в производственных условиях лишь до нескольких процентов, например, до 4% при синтезе метанола, до 15% при синтезе аммиака. Вследствие этого становится неизбежным циклический способ производства. [c.208]

    В целом получение карбамида — гетерогенный процесс в системе Г—Ж, протекающий в кинетической области, причем скорость его лимитируется протекающей наиболее медленно стадией дегидратации карбамата аммония в расплаве. На равновесие и скорость синтеза карбамида влияют давление, температура и состав системы. Поскольку карбамат аммония обладает высоким давлением паров и, кроме того, синтез в целом протекает с уменьшением объема газа, то равновесный выход карбамида растет с увеличением давления (рис. 59). Скорость процесса и фактический выход карбамида также резко увеличиваются с повышением давления в результате возрастания движущей силы процесса, т. е. возрастания концентрацин газообразных реагентов. Скорость процесса, в частности скорость лимитирующей стадии (б), резко возрастает с повышением температуры, в результате чего растет фактический выход карбамида. Из рис. 60 видно, что выше 180°С кривые выхода проходят через максимум. При дальнейшем увеличении времени пребывания реакционной смеси в зоне нагрева выход карбамида падает из-за усиления побочных реакций. Выход продукта можно также увеличить применением избытка аммиака в исходной смеси по отношению к стехиометрическому соотношению [c.157]


    Программы не приспособлены для расчета равновесия в системах жидкость — жидкость. Если известно, что система находится вблизи точки взаимной растворимости, необходимо убедиться в том, что рассчитанные значения действительно соответствуют условиям смешивающихся систем. Далее, если расчетное равновесное значение давления слишком высоко, или, соответственно, если расчетная величина объема пара смеси слишком мала (особенно по отношению ко второму вириальному коэффициенту смеси), то, по всей вероятности, расчетные значения параметров выйдут из диапазона адекватности вириального уравнения и результаты расчета могут очень сильно отличаться от истинных значений. [c.89]

    В табл. 3 показано, как равновесное парциальное давление сероводорода изменяется в зависимости от температуры и содержания водяных паров. При низких парциальных давлениях воды (< 0,2% Н2О) более вероятно, что в обоих случаях реакция определяется не равновесием, а кинетикой. Хотя в обоих случаях равновесное парциальное давление сероводорода увеличивается пропорционально возрастанию концентрации паров воды, но на окиси цинка оно остается очень низким в широком интервале концентрации паров воды. Поэтому реакция, как показано в табл. 3, определяется кинетикой в широком диапазоне. Для окиси железа, однако, реакция начинает определяться равновесием, и парциальное давление сероводорода достаточно высоко, чтобы снизить активность катализатора парового риформинга. [c.70]

    Поскольку конверсия окислов углерода в метан происходит почти полностью, то газ на выходе содержит около 1,7% СН4, 2% Н2О и 70% На- При атмосферном давлении равновесные концентрации окиси углерода и двуокиси углерода составляют Рсо = 3,96х XlO-i атм, Рсо, = 2,88-10 атм, т. е. концентрация СО составляет 3,96-10 ч млн, а концентрация СО2 — 2,88-10 ч/млн. При более высоких давлениях равновесные концентрации увеличиваются. Очевидна малая вероятность того, что производительность катализатора лимитируется приближением к равновесию. При нормальных концентрациях на выходе метанирование является реакцией [c.144]

    Получению высокого выхода аммиака благоприятствует проведение процесса при высоком давлении и низкой температуре. Практикой установлено, что оптимальное давление для экономичного осуществления процесса находится в интервале от 150 до 350 ат. Применяется и более высокое давление (до 1000 ат), но обычно его равновесные преимущества не могут быть использованы вследствие большой стоимости компрессии газа и значительных капитальных затрат на установки. [c.153]

    Одновременное сосуществование равновесных паровой и жидкой фаз, состоящих из компонентов а и IV при внешнем давлении тс, возможно только в пределах температур -При температурах,ниже чем система состоит только из жидкой фазы, а при температурах, выше чем — только из паровой фазы. При температуре давление насыщенных паров НКК равно внешнему давлению при более низких, чем температурах давление в системе будет ниже тс. Аналогично при температуре давление насыщенных паров ВКК равно внешнему давлению, а при температурах выше, чем < один ВКК будет создавать более высокое давление, чем я. [c.65]

    Необходимо отметить, что закон Рауля применим только для идеальных смесей, однако с известной долей приближения он может быть использован и для смесей углеводородных гомологов Сг—Сб в СНГ при умеренных давлениях. С целью повышения точности расчетов констант равновесной системы жидкость— пары для углеводородов при высоких давлениях некоторые предпочитают вводить фугитивную функцию в давление паров. [c.68]

    Действие добавок, возвращающих реакцию к мопомоле-кулярной, с помощью схемы Линдемана объясняется тем, что молекулы добавленного вещества, сталкиваясь с возбужденными молекулами реагирующего вещества, дезактивируют последние, возвращая их в исходное нереакционноспособное состояние, а сталкиваясь с невозбужденными молекулами, они их, наоборот, активируют. Интересно, что молекулы добавляем мых газов увеличивают скорость мономолекулярной реакции до величины, характерной для высокого давления, но не дают возможности превысить эту величину. Следовательно, роль их неспецифична и заключается лишь в поддержании равновесной, по максвелл-больцмановскому распределению, концентрации активных молекул реагирующего вещества. Доля участия молекулы в переносе энергии при мономолекулярном распаде зависит от ее химической природы и в общем возрастает с ростом молекулярного веса и числа атомов в молекуле. Ниже приведена относительная эффективность (т]эф.) дей  [c.166]

    Реакция С2Н4 -Ь Н О С2Н5ОН -Н 10,9 ккал/молъ представляет собой экзотермическую равновесную реакцию. Чтобы равновесие было сдвинуто в желательную сторону, реакцию следует вести при возможно низкой температуре и высоком давлении. Практически, однако, температуру реакции нельзя поддерживать на уровне, лежащем ниже некоторого оиределенного значения, так как в противном случае скорость реакции и присоединение [c.204]

    Теплота смешения паров обычно очень мала, и, кроме случаев весьма высоких давлений, ею вполне можно пренебречь. Это означает, что и для реальных си-втем изотермы (1.101) представляются на тепловой диаграмме прямыми линиями. Однако, как и для случая жидкой фазы, только одна точка-каждой из этих изотерм, та, абсцисса которой равна концен-т рации у равновесной паровой фазы, принадлежит линии на-сыш енного пара энтальпийной диаграммы. Таким образом, если на график энтальпия — состав нанести изотермы (1.100) и (1.101) и с помощью данных парожидкостного равновесия [c.59]

    Было исследовано превращение метилциклогексана в толуол в нормальных условиях, когда конверсия в толуол ничем не ограничена, и при высоком давлении, когда образование толуола ограничивается равновесными условиями. Продукт конверсии в нормальных условиях содержал 91,5% толуола, 7,6% непрореагировавшего метилциклогексана и 0,9% неидентифицированных веществ. Продукт конверсии при высоком давлении 94% метилциклогексана содержал 56% толуола, 33% изомерных алкилциклопентанов, 4% парафинов от С1 до С, и 1% неиндентифициро-ванных веществ. Было установлено, что основным продуктом изомеризации является 1,3-диметилциклоп0нтан. [c.182]

    Подобно парафинам, нафтеновые углеводороды с хорошей селективностью изомеризуются в присутствии металлов и сульфидов металлов при 300—450° С и под высоким давлением водорода. Конечные продукты являются близко-равновесными смесями [494—496]. Метилциклопентан и циклогексан превращаются друг в друга метилциклогексан дает смесь 1,1-, 1,2- и 1,3-диме-тилциклопентанов и этилциклопентанов этилциклогексан преобразуется в 1,1- и 1,2-диметилциклогексаны, 1,1,2- и 1,2,3-три-метилциклопентаны наряду со следами изопропилциклопен-тана [494]. [c.124]

    Кратко остановимся на вопросе расчета состава газовой и жидкой фаз смесей углеводородов с надкритическими газовыми компонентами, такими как метан и его гомологи, яри высоких давлениях. Такие смеси в виде газоконденсатных и газонефтяных залегают на разных глубинах осадочной толщи земли. Из-за отсутствия теоретических методов расчета фазового равновесия таких смесей при высоких давлениях определение состава их равновесных фаз ведут по константам фазового равновесия углеводородов К ). Величина углеводорода I представляет собой отношение его мольных долей в равновесных газовой и жидкой фазах системы. Величина К зависит не только от температуры и давления системы и от природы углеводорода 1, но и от природы и концентрации всех других компонентов системы. Константы фазового равновесия углеводородов определяются по атласу констант, периодически публикуемому Американской ассоциацией для снабжения и переработки природного газа. Методы расчета состава фаз в углеводородных системах с помощью констант фазового равновесия подробно описаны в ряде работ [Е11ег1 С. К-, 1957 г. Степанова Г. С., 1974 и Намиот А. Ю., 1976 и др.]. [c.14]

    По своему фазовому поведению система СО2— HjO относится к тому же типу, что и ранее рассмотренная система Н2О — СН4. Она также имеёт разорванную критическую кривую. Ее двойная гомогенная критическая точка лежит при 266Х (рис. 28). Правая ветвь критической кривой (на рисунке показана пунктирной линией), определенная по составам сосуществующих равновесных газовых и жидких фаз, выходит из критической точки чистой воды(Сн2о). идет в сторону более низких температур и более высоких давлений и достигает минимума критических температур при 266°С, давлении 2498 кгс/см и критическом составе 0,415 мольные доли СО2 и 0,685 мольные доли Н2О. При дальнейшем повышении давления критическая кривая вновь направляется в сторону более высоких температур. Левая ветвь критической кривой, выходя из критической точки чистой [c.55]

    Справочные данные о значениях термодинамических функций разных веществ относятся большей частью к стандартному состоянию их. Поэтому при сопоставлении термодинамических свойств данного веи1ества в жидком и газообразном состояниях и для расчета изменения этих свойств в процессе испарения нередко возникает необходимость перехода от величин, относящихся к стандартным состояниям жидкости и газа, к величинам, относящихся к равновесным их состояниям. Тепловые эффекты процесса (кроме области высоких давлений и концентрированных растворов) различаются в этом случае незначительно. Однако изменения энтропии (и, следовательно, AG) могут сильно различаться. Энтропия жидкости в стандартном состоянии мало отличается от энтрепии ее в состоянии равновесия с насыщенным паром при той же температуре, и этим отличием можно пренебречь, но для газообразного состояния значения энтропии могут быть весьма различными, так как энтропия газа сильно зависит от давления. Ограничиваясь условиями, в которых допустимо применение законов идеальных газов, и учитывая, что для стандартного состояния газа р— атм, можио, пользуясь ур. (VII, 53), выразить разность между энтропией газа в стандартном состоянии 8° и в состоянии насыщенного пара SpaBH равенством  [c.256]

    Допущение, что ДЯравн = АЯ°, кроме области высоких давлений или концентрированных растворов, не вносит существенных иска-Л жений. Применяя это допущение к ур. (УП1, 36) и учитывая, что ДЯравн = 7 А5равн. МОЖНО, как было показано автором, получить следующие соотношения между изменением энтропии в равновесных условиях течения реакции А5равн и изменением ее при течении реакции в условиях стандартного состояния компонентов Д5  [c.269]

    Реакции с изменением числа молекул. Перейдем теперь к вычислению состава равновесной смеси для реакций с изменением числа молекул, например, когда Av = 2. Для этого типа реакций, если исходные вещества смешаны в эквивалентных количествах, уравнение для расчета равновесия можно свести к уравнению второй степени. В качестве примера рассмотрим синтез аммиака ЗН2 -f N2 = = 2NH3, для которого Av = —2. В производстве синтез аммиака осуществляется по замкнутому циклу в присутствии катализатора при относительно высоких давлениях (л 10 Па) и температурах 750 —900 К. При этом исходные вещества, т. е. Н2 и N2, берутся в эквивалентных количествах. Обозначим через х процентное (молярное) содержание аммиака в равновесной смеси. Исходя из условий синтеза равновесная смесь будет содержать [c.251]

    Большой раздел посвящен расчетам изменения энергии Гиббса в результате химических реакций и составов равновесных смесей. Так как на практике мы часто имеем дело с неидеальными системами, то рассмотрены основные методы расчета летучестей, использование летучестей и коэффициентов активности для определения состава равновесий смеси неидеальных систем. Кроме того, описаны эмпирические методы вычисления критических параметров (метод Лидерсена, Формана и Тодеса), а также вычисление энтальпий и теплот реакций, проводимых при высоких давлениях. [c.3]

    Отсюда следует, что в однокомпонентной системе число фаз, находящихся в равновесии, не может быть больше трех. Однако это не означает, что данная однокомпонентная система может образовать лишь три фазы. Так, например, вода помимо обычного образует так называемые горячие льды, существующие при высоких давлениях. Речь идет лишь о том, что одновременно не могут сосуществовать более трех равновесных фаз. В зависимости от числа фаз, находящихся в равновесии, однокомпонентные системы могут быть дивариант-ными (Ф = 1, С = 2), моновариантными (Ф = 2, С = 1) и инвариантными (Ф = 3, С = 0). [c.324]

    Сусл =3—2—1 =0.) В точке к кривая Р = /(Л обрывается, а температура и давление имеют строго определенные значения Г р =304 К, Я р =73,97 - 10 Па (73,0 атм). Точка О, в которой пересекаются линии аО, ЬО и кО, называется тройной точкой. Она изображает состояние равновесной трехфазной инвариантной системы (С = 3—3 = 0). Однокомпонентная трехфазная система может находиться в состоянии равновесия лишь при единственном, строго определенном значении Р и Т. Для диоксида углерода положение тройной точки определяется значениями Т = 216,55 К и Р =5,18 10 Па (5,11 атм). В отличие от большинства веществ в жидком состоянии диоксид углерода может быть получен лишь при высоких давлениях, так как твердый СО2 при атмосферном давлении переходит непосредственно в газообразное состояние, минуя жидкую фазу. Спрессованный твердый диоксид углерода испаряется сравнительно медленно, на чем основано применение его в качестве хладагента (сухого льда). [c.333]

    Реакционная масса сливается в промежуточный сборник 3, откуда насосом 4 высокого давления непрерывно подается на этерификацию в верхнюю часть эфирнзатора 7. Эфиризатор имеет колпачковые тарелки, и жидкость стекает по ним сверху вниз. Противотоком к ней движутся пары метилового спирта, перегретые в подогревателе 6. За счет их тепла этерификация идет при 250°С и 2,5 МПа. При этом пары спирта, подаваемого в избытке, уносят образующуюся воду, способствуя более полному завершению равновесного процесса этерификации. Выходящие из аппарата 7 пары метанола и воды полностью конденсируются в [c.400]

    Металлические катализаторы гидрирования мало эффективны при сосстановлении карбоксильной группы, и успех процесса во мног( м решила разработка активных контактов оксидного тнпа, обла ,ающих селективной адсорбционной способностью к кисло-родс( держащим соединениям. Среди них наибольшее практическое значение получили медь- и цинк-хромитные (СиО-СггОз и ZnO- СГ2С13), а также медь-цинк-хромитные ( uO-ZnO- raOa) катализаторы. Реакция проводится при 250—350°С и высоком давлении (25—35 МПа), необходимом для увеличения скорости и равновесной (тепени конверсии. [c.505]

    Решение. Синтез аммиака основан на экзотермической обришмой реакции N2 -Ь 3 2 тНз, идущей с уменьшением объема и требующей большой энергии активации. Процесс ведут в промышленности в присутствии катализатора при высоком давлении, повышающем равновесную степень превращения, и высокой температурё, обеспечивающей достаточно большую скорость процесса, но в известиой мере смещающей равновесие в сторону исходных продуктов- [c.117]

    В распространенных случаях, когда жидкий углеводород расходуется не полностью и образуется равновесная паро-газовая смесь, взрывобезопасность реактора нитрования (окисления) обеспечивается его термоста-тированием. Пределы взрываемости смесей, образующихся в технологических процессах, изучены экспериментально в основном для нормальных условий. Пределы, соответствующие более высоким давлениям, могут быть вычислены по величине барического коэффициента е [см. уравнение (3.3)], который можно определить для модельного компонента. Значения в для смесей с окислами азота примерно такие же, как для смесей с кислородом. [c.82]

    МПа и вьше выход иетана начинает возрастать и принимать его ориентировочно нецелесообразно, тем более, что проведение прямых предварительных исследований процесса газификации при высоких давлениях представляет особые трудности. Для термодинамических расчетов по данной методике необходимо проведение большого ряда экспериментов с получением данных по выходу метена в газе и сажи в зависимости от различных начальных условий. Выполненные на пилотной установке эксперименты в основном подтверждают проведенные предварительные термодинамические расчеты, в том числе влияние водяного пара и температуры на равновесный состав газа. Виесте с тем опыты показали недостатки существующей методики при при-иенении ее в области низких температур, когда существенно начинает расти выход сажи. [c.118]

    С точки зрения равновесных концентраций реагирующих молекул повышение давления будет препятствовать ароматизации. Одиако оказывается необходимым применять в системе высокое давление водорода для насыщения непредельных продуктов побочных реакций крекинга. В случае отсутствия в системе высокого парциального давления ЁОДброда на поверхнссти катализатора протекают реакцни глубокого уплотнения ненасыщенных углеводородов с образованием кокса. При осуществлении процесса под давлением от селективности катализатора [c.223]

    Из уравнения следует, что равновесная степень превращения этилена возрастает с понижением температуры и повышением давления (рис. 12.7). Однако применение высокого давления повышает затраты на аппаратуру и энергию, а при низких температурах скорость реакции весьма мала. Оптимальными условиями процесса являются температура 260-300°С, давление 7—8 МПа, объемная скорость парогазо- Рис. 12.7. Влияние температу- [c.275]


Смотреть страницы где упоминается термин Равновесно при высоких давлениях: [c.113]    [c.222]    [c.35]    [c.188]    [c.107]    [c.308]    [c.397]    [c.184]    [c.163]   
Смотреть главы в:

Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности -> Равновесно при высоких давлениях




ПОИСК







© 2025 chem21.info Реклама на сайте