Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация полимеров механическая

    Релаксационные явления в полимерах. Многие свойства полимеров и, в частности, механические и диэлектрические свойства обнаруживают своеобразные особенности, обусловленные частично замедленной реакцией материала на внешние воздействия. Всякая деформация полимера под действием внешней силы не сопровождается мгновенной перестройкой внутренней структуры до состояния равновесия, отвечающего новым условиям. Для этого требуется некоторый промежуток времени, пока все частицы в соответствии с этими условиями придут в равновесие. Процесс перехода частиц в новое состояние равновесия называется релаксацией. (Релаксацией буквально называется ослабление, в данном случае имеется в виду ослабление напряжения, созданного внешним воздействием). Так, если быстро деформировать полимер и [c.579]


    Под старением понимают самопроизвольное необратимое, обычно неблагоприятное, изменение свойств материала при хранении и эксплуатации, приводящее к потере им работоспособности. Старение является результатом воздействия на полимер энергетических (тепло, свет, радиация, механические напряжения и т. д.) или химических (кислород и другие химически активные вещества) факторов. В зависимости от того, какой из этих факторов является определяющим, различают тепловое, световое и другие виды старения. В эксплуатационных условиях на изделия обычно действуют одновременно несколько факторов, в результате чего через некоторое время происходит потеря их работоспособности. Практически важным случаем старения является одновременное воздействие механических напряжений и агрессивной среды, в частности утомление при многократных деформациях в активной среде, разрушение при трении и износе в агрессивной среде, химическая релаксация. [c.125]

    В процессе утомления в каждом цикле деформации выделяется некоторое количество теплоты и, если теплоотвод затруднен, а подвод тепла за счет механической энергии велик, то разогрев может быть велик. Так, температура в автопокрышке летом при быстром движении автомобиля может превышать 100°С. Тепловыделение особенно велико, когда время релаксации полимера близко к продолжительности цикла, т. е. крите )пй 0= 11 близок к еди- [c.211]

    Как правило, применяют высокочастотные методы электрической релаксации, и все ограничения, относящиеся к высокочастотной механической релаксации (см. гл. IX), относятся и к электрической релаксации полимеров многие слабые релаксационные переходы не разрешаются. [c.241]

    Полученные данные показывают, что теория приведенных переменных, развитая применительно к динамическим механическим свойствам полимеров и оперирующая с процессами, описываемыми группой сравнительно небольших времен релаксации, применима также к процессам, которые характеризуются очень большими временами релаксации. Эти данные подтверждают также справедливость выводов теории об одинаковой температурной зависимости всех времен релаксации полимера. [c.113]

    На рис. III. 48 представлены отношения D1/D2 для разных температур, причем в качестве основы для сравнения были взяты размеры частиц с поверхностным слоем при 90 °С. На построенной зависимости в области, в которой наблюдается максимум механических потерь, также обнаруживается максимум. Такое совпадение связано с тем, что при этой температуре время проведения эксперимента сопоставимо со средним временем релаксации полимерной матрицы. (Выше уже отмечалось, что толщина поверхностного слоя зависит от частоты воздействия.) При температуре, соответствующей максимуму механических потерь, времена релаксации в поверхностном слое больше характерного времени экспериментальной шкалы, поэтому этот слой не может существенно деформироваться. В то же время на больших удалениях от границы раздела фаз времена релаксации полимера сопоставимы с временем воздействия, и поэтому общая деформация материала определяется деформацией этих более удаленных слоев. [c.148]


    С релаксацией полимеров связана их способность к механическому гистерезису, которая заключается в следующем. Если постепенно увеличивать, а затем также постепенно уменьшать усилие, действующее на образец, то кривая, показывающая изменение [c.28]

    Суц ественным для читателя является то, что в книге приводится способ вычисления спектров релаксации и механических потерь на основе экспериментально определенных вязкоупругих функций. Несомненный интерес представляют приведенные в книге конкретные пр1 меры практ ческого применения различных динамических методов к исследованию вязкоупругих свойств полимеров. Автором проведена большая и очень ва.Ж ая работа по сбору в ед ое целое многочисленных сведений, необходимых для исследователей, работающих в области механик полимеров. [c.6]

    В заключение отметим, что при рассмотрении природы механических релаксационных процессов возникает вопрос о взаимосвязи между временами жизни структурных элементов и временами релаксации. Эта проблема находится в настоящее время в стадии постановки, а не решения. Для полимеров, по различным оценкам, максвелловское время релаксации, характеризующее тот или иной процесс механической релаксации полимеров, на один-два порядка больше соответствующего времени структурной релаксации [4, с. 33 53—551. [c.127]

    Изучение поведения полимеров в динамических механических полях преследует две цели выяснить роль процессов молекулярной релаксации полимеров в формировании физико-механических свойств и изучить поведение материала в условиях эксплуатации при циклической нагрузке. [c.200]

    В книге помещены статьи крупнейших советских ученых в области физики высокомолекулярных соединений по механической, диэлектрической и магнитной релаксации полимеров и композиций на их основе. Особое внимание уделяется связи прочностных и вязкоупругих свойств полимеров с их химическим составом, а также с молекулярным строением и надмолекулярной структурой. [c.2]

    Релаксационный характер механических свойств и физических состояний полимеров. Специфика полимеров заключается не только в проявляющейся при определенных условиях способности к большим обратимым деформациям, но также в том, что их механические свойства носят резко выраженный релаксационный характер, т. е. сильно зависят от временной, а в случае периодических деформаций, от частотной шкалы. Эта. зависимость, как и высокоэластичность, является следствием длинноцепочечного строения полимеров и обусловлена необходимостью длительных промежутков времени (времен релаксации) для конформационной перестройки большого числа связанных ме.жду собой структурных элементов цепи при переходе ее из одного равновесного состояния в другое. Время релаксации является функцией температуры и за- [c.40]

    МОДЕЛЬНОЕ ОПИСАНИЕ ПРОЦЕССОВ МЕХАНИЧЕСКОЙ РЕЛАКСАЦИИ ПОЛИМЕРОВ И ПРОГНОЗИРОВАНИЕ ИХ ДЕФОРМАЦИОННЫХ СВОЙСТВ [c.163]

    Выражением релаксационного характера механических свойств полимеров являются гакие широко известные факты как трудность достижения равновесного значения высокоэластической деформации, медленное увеличение деформации при постоянной нагрузке (ползучесть), убывание напряжения со временем в деформированном образце (релаксация напряжения), различие в напряжении при одной и той же величине деформации в случае нагружения и в случае разгружения (механический гистерезис и связанные с ним тепловые потери), отставание при периодическом деформировании деформации от напряжения и, как следствие этого, существование так называемого тангенса угла механических потерь. [c.41]

    Количественной характеристикой высокоэластических свойств расплавов служит податливость J = у /т или обратная ей величина модуля высокоэластичности G = J = (где — обратимая составляющая полной деформации и т — касательное напряжение). Как говорилось при обсуждении кинетики развития вязкого течения, соотношение между у и необратимым течением зависит от временного фактора, характеризующего режим деформирования, и времени релаксации полимера. Если деформирование продолжалось достаточно долго, то достигается режим установившегося течения, который количественно определяется постоянством основных параметров — касательного напряжения, отвечающей ему скорости сдвига и накопленной обратимой деформации. Поэтому режим установившегося течения описывается некоторыми значениями вязкости т] и модуля высокоэластичности G, которые в общем случае зависят от режима деформирования, так что для нелинейной области механического поведения расплава существенна не только непропорциональность т и у, но и нелинейность зависимости у от т. [c.208]

    Форма температурной зависимости времени релаксации показывает, что для каждого полимера существует область температур, в которой время релаксации оказывается соизмеримым со временем действия внешнего фактора и релаксационные явления проявляются наиболее полно. Например, при деформировании полимера в условиях, когда время релаксации значительно превышает время действия силы (т О. подвижность сегментов не проявляется и полимер ведет себя как стеклообразный. Это достигается либо при понижении температуры ниже температуры стеклования, либо при повышении скорости деформирования высокоэластичного полимера (механическое стеклование). Поскольку самопроизвольные конформационные превращения в стеклообразных полимерах невозможны, при невысоких напряжениях релаксационные процессы в них протекают чрезвычайно медленно, и система практически всегда оказывается неравновесной. [c.38]


    При многократной деформации каждый цикл работы полимера сопровождается определенной величиной гистерезисных потерь в результате которых происходит разогревание образца. При этом возрастают потери тепла в окружающую среду и снижается время релаксации полимера. Поэтому при повторных циклах гистерезис-ные потери уменьшаются, стремясь достигнуть определенного равновесного значения. Возрастание температуры при многократных деформациях способствует протеканию в полимере различных химических процессов, например окисления макромолекул. Следовательно, на утомление полимерного материала влияет не только-простое накопление механических дефектов, но и сложные химические превращения макромолекул, происходящие при совокупном действии на полимер механических усилий, высоких температур атмосферных факторов (кислород, озон, ультрафиолетовые и инфракрасные лучи и т. д.). [c.89]

    Релаксационный характер деформации полимеров оказывает влияние на многие механические, диэлектрические и другие свойства их. Так, при периодически действующей внешней силе деформация полимера в условиях, когда время релаксации значительно, будет в той или другой степени запаздывать по сравнению с действием силы. В результате этого при короткопериодических (высокочастотных) воздействиях полимер проявляет более высокий модуль упругости (точнее — модуль эластичности), а следовательно, и меньшую эластичность, чем при постоянно действующей силе. [c.581]

    Температурная зависимость механических свойств аморфных полимеров выше может быть описана так называемой функцией приведения ат- Эта величина представляет собой отношение времени релаксации при некоторой температуре Т ко времени релаксации при температуре Т> Т > Т , т.е. [c.139]

    Об этом же говорят и данные исследования динамических механических и диэлектрических свойств полимеров, показывающих присутствие широкого спектра времен механической и диэлектрической релаксации. Используя предположение о существовании широкого спектра времен корреляции, удается объяснить эффекты, наблюдаемые методом ЯМР, а также получить хорошее соответ ствие между данными исследования механических и диэлектрических свойств полимеров и результатами измерения времен Т] и тз. Еще одно применение импульсной техники связано с измерением коэффициентов самодиффузии в расплавах полимеров методом спинового эха. Зн ание коэффициента самодиффузии очень важно, [c.275]

    При частичном проникновении жидкости или пара в матрицу возникают градиенты концентраций, которые действительно оказывают прямое механическое действие вследствие неоднородного набухания или косвенное действие вследствие неоднородной релаксации или распределения напряжений. Подобные действия даже усиливаются в присутствии температурных градиентов и могут вызвать быстрое образование обычных трещин и трещин серебра. В случае медленного проникновения окружающей среды в однородную матрицу с достаточно перепутанными цепями вынужденные напряжения обычно снимаются упругими или вязкоупругими силами. Например, в листах поликарбоната после проведения искусственных погодных испытаний не обнаруживаются трещины даже после воздействия суровых температурно-влажностных циклов [212]. Однако за относительно короткий период, 30—32 мес, естественных погодных испытаний на стороне, обращенной к солнечным лучам, возникала сетка поверхностных микротрещин. Путем сравнения с искусственным ультрафиолетовым облучением образцов авторы работы [212] смогли показать, что фотохимическая деградация поверхностных слоев вносит дефекты в материал и снижает прочность полимера в такой степени, что вызванные физически неоднородные напряжения стимулировали образование микротрещин, а не рассасывание неоднородностей. Влияние жидкой среды на образование обычной трещины и трещины серебра будет рассмотрено в разд. 9.2.4 (гл. 9). [c.319]

    Процесс наблюдается только в присутствии в полимере активного наполнителя. Для полимеров, указанных в табл. I. 1, время релаксации -процесса при 20 °С равно величине порядка 1 с. Отчетливо наблюдается соответствующий максимум механических потерь. Считается, что этот максимум связан с изменением сегментальной подвижности в адсорбционном (граничном) слое полимера, поэтому энергия активации данного процесса выше, чем процесса стеклования. -Процесс происходит без перестройки в целом сажевой структурной пространственной сетки, так как частицы сажи проявляют подвижность при более высоких температурах и больших временах наблюдения. [c.63]

    Мы будем исходить из определений линейных и макросетчатых полимеров, данных в гл. I. Как там указывалось, между узлами сетки в зависимости от ее густоты заключены более короткие или более длинные цепи, которые мы в дальнейшем условимся называть цепями сетки. Различие между классами полимеров в механических свойствах заключается прежде всего в том, что в линейных полимерах физическая релаксация с течением времени приводит [c.105]

    Зависимость температур стеклования Т с и 7с соответственно от скорости охлаждения и частоты внешнего воздействия связана с релаксационной природой процессов. При этом механическое стеклование объясняется потерей сегментальной подвижности и определяется а-процессом релаксации. Этот процесс является главны.м релаксационным процессом в полимерах. [c.59]

    Некоторые методы переработки полимеров"рассчитаны на то, что формование надмолекулярных структур (структурирование) будет происходить непосредственно в самом процессе переработки. Примерами таких технологических процессов являются формование волокна и экструзионно-выдувное формование с предварительной вытяжкой. В первом примере волокно после фильерного формования для получения нужной структуры должно быть подвергнуто холодной вытяжке (см. разд. 3.7). Во втором примере характер ое время релаксации полимера при температуре формования должно быть достаточно велико, для того чтобы в материале до начала ох. лаждения сохранилась большая часть созданной в процессе формования двухосной ориентации. Таким свойством обладают аморфные полимеры при температуре, несколько превышающей температуру стеклования. Можно назвать эту способность структурируемостью она зависит как от реологических характеристик расплава полимера, так и от его механических свойств при Тд < Т < Г (. [c.615]

    Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 К/мин показывает, что 7 с нельзя отолсдествлять с т сун(, которая может быть сопоставлена с температурой стеклования полимеров в периодических силовых полях. При этом времени корреляции Тс может соответствовать время релаксации полимеров во внешнем поле. В ряде случаев обнаружено совпадение Тсут с температурой механического стеклования, измеренной ультразвуковым [c.223]

    Процессы перехода к состоянию термодинамического равновесия в полимерах осуществляются за счет самых различных видов молекулярного движения. Каждому виду молекулярного двил екия соответствует определенный релаксационный процесс, который характеризуется своим временем релаксации. Для того чтобы наблюдать и исследовать какой-либо релаксационный процесс в полимерах и соответствующий ему тип молекулярного двил<еиия, необходимо, чтобы время воздействия на полимер (или время наблюдения) было соизмеримо со временем релаксации. Следовательно, для изучения релаксационных процессов акустическими методами (а это один из наиболее распространенных методов их изучения) необходимо, чтобы период звуковых колебаний был того же порядка, что и время релаксации полимера. Рассмотрим линейный аморфный полимер, находящийся в высокоэластическом состоянии. В этом случае число возможных конформаций, которые мол ет принимать каждая макромолекула, достаточно велико, и в полимере реализуются весьма разнообразные виды молеку-лг рного движения. Пусть в таком полимере распространяются звуковые колебания, частоту которых можно изменять в широких пределах. Если частота звуковых колебаний очень мала, т. е. период звуковых колебаний очень велик по сравнению с временем релаксации са- . ых больших кинетических элементов макромолекул, то энергия звуковых колебаний, которую получат за период элементарный объем полимера, будет быстро перераспределяться по всему объему полимера вследствие сегментальной подвижности микроброуновского типа (диффузии сегментов макромолекул). В этом случае процесс рассеяния энергии носит квазиравновес-ный характер, механические потери невелики, и полимер быстро восстанавливает свои размеры и форму пос.п -снятия приложенного внешнего напрял ения. Естественно, что и динамический модуль упругости полимера (а также скорость звука в нем) будет очень малым, т. е. такого л<е порядка, как и жидкости. [c.254]

    Релаксационные явления в значительной степени определяют протекание физических и химических процессов в полимерах [7.1—7.9]. Полимеры — сложные многоуровневые системы, состоящие из структурных элементов (кинетических единиц) различной природы (атомов, боковых и концевых групп, звеньев макромолекул, свободных и связанных сегментов,- элементов надсегментальной и надмолекулярной структуры, физических и химических узлов сетки, частиц наполнителя и т. д.). Это приводит к большому разнообразию форм молекулярной подвижности и соответствующих им релаксационных процессов, которые наблюдаются при действии на полимер механических, электрических или магнитных полей. При этом наиболее универсальным воздействием, позволяющим получить полную информацию о молекулярной подвижности и процессах релаксации в полимерах, является механическое воздействие. Электрические и магнитные поля могут вызвать не все релаксационные переходы, так как электрическое поле действует только на элементы, обладающие дннольным моментом, а магнитное поле — на элементы, обладающие магнитным моментом. [c.195]

    Важнейшим параметром флуктуацнонной сетки зацеплений является среднее время жизни узла, или, что то же самое, время релаксации при механическом воздействии на элементы, образующие узел. Если это время неограниченно велико и сравнимо со временем существования химических связей, то напряжения в сетке не релак-сируют, если не считать механизма химической релаксации из-за разрыва химических связей. Тогда полимер способен неограниченно долго сохранять деформации или напряжения. Этот случай отвечает резинам или вообще полимерам с трехмерным структурным каркасом. Если время релаксации очень мало, во всяком случае существенно меньше, чем продолжительность наблюдения, то структурные элементы, с точки зрения наблюдателя, оказываются совершенно не связанными, они свободно проскальзывают в узлах, и система ведет себя как типичная жидкость. Во всех промежуточных случаях разыгрывается широкий комплекс релаксационных явлений, связанный с существованием набора (спектра) времен релаксации движений полимерной цепи. При этом весь спектр упрощенно можно разделить на две части — область медленных релаксационных процессов, завершающихся медленнее, чем распадаются узлы сетки флуктуационных связей, и область быстрых релаксационных процессов, которые осуществляются быстрее, чем происходит релаксация в структурных узлах сетки. По отношению к первой группе времен релаксации факт существования сетки является определяющим для поведения системы, по отношению ко второй группе он не сущестаён. [c.274]

    Ферри злагает молекулярну о теорию про Зводит обобщения. позволяющие сделать некоторые кол1 чественные предсказания. Ему удалось, основываясь на существующей стадии развития теории, объяснить вл1 яние х Мического строения на вязкоупругие свойства полимеров. Большое внимание в книге уделяется также рассмотрению релаксационных свойств эластомеров, спектров релаксации и механических потерь при деформаци нол меров. [c.6]

    Обсуждаемый переход структурно-жидкого полимера в твердообразное состояние называют структурным стеклованием в отличие от механического стеклования, в котором твердоподобие полимера при действии силового поля вызывается ориентационными эффектами или же является результатом возрастания частоты приложенного напряжения. Когда время действия силы становится меньше времени релаксации, полимер реагирует на воздействие подобно твердому телу. [c.78]

    Механические свойства полимеров зависят от времени действия и скорости приложения нагрузки. Под действием механических напряжений происходит как распрямление и раскручивание цепей, так и перемещение макромолекул, пачек и других надалолекулярных структур. Все гто требует определенного временили установление равновеовя (релаксация) достигается не сразу. [c.27]

    Установлено, что данное выражение справедливо для ряда полимеров (ПВХ, ПК, ПММА, ПС, ацетата целлюлозы) в более или менее широких интервалах температур и скоростей деформации [154, 156, 158]. Значения у (зависящих от температуры) активационных объемов при комнатной температуре заключены в интервале 1,4 нм (ПММА) — 17 нм (ацетат целлюлозы). Это означает, что, согласно данному представлению, деформация полимеров при достижении предела вынужденной эластичности обусловлена термически-активированным смещением молекулярных доменов в объемах, размеры которых в 10 (ПММА) — 120 (ПВХ) раз больше длины мономерного звена. Ряд авторов указывал [155—158, 160], что приведенный выше критерий (8.29) соответствует критерию вынужденной эластичности Кулона To+ ip = onst. Коэффициент трения ц обратно пропорционален у. Анализируя свои экспериментальные данные по поликарбонату с учетом выражения (8.29), Бауэне— Кроует и др. [158] приходят к выводу о существовании двух процессов течения. Они связывают их с а-процессом (скачки сегментов основных цепей) и с механизмом механической -релаксации. [c.304]

    Подвижность различных элементов структуры полимеров характеризуется временами релаксации в широком диапазоне от 10" ° с до 10 с, а соответствующие им релаксационные процессы наблюдаются методами релаксационной спектрометрии, например, при деформации полимеров под действием статических или переменных механических нагрузок или при воздействии электрических и магнитных (гл. VII, VIII) полей, а также в процессах стеклования (гл. II), течения (гл. V), диффузии и т. д. [c.58]

    Самый длительный процесс релаксации относится к перестройке вулканизационной пространственной сетки, образованной химическими поперечными связями. Процесс наблюдается как в наполненных, так и ненаполненных полимерах. Энергия активации этого процесса совпадает с известными данными Тобольского [37, с. 228] для химической релаксации вулканизатов каучуков и для б-макси-мума механических потерь .  [c.63]

    Температуры структурного стеклования Тс и механического стеклования Тм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость lg от температуры для полимера 11риведена на рис. П. 11. Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость Igf слабо выражена, как и у любого твердого тела вообще. Выше Гс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного (жатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль Еж в высокоэластическом состоянии. [c.96]

    Из упругого состояния полимер можно вновь перевести сначала в высокоэластическое, а затем и в вязкотекучее состояние либо увеличением периода действия силы 0 (или уменьшением частоты), либо уменьшением времени релаксации т, что достигается повышением температуры. Следовательно, природа перехода полимера из высокоэластического деформационного состояния в упругое, как и природа структурного стеклования, молекулярно-кинетическая и определяется теми же процессами молекулярных перегруппировок. Однако переход в упруготвердое состояние не связан с замораживанием структуры и происходит в структурно-жидком состоянии системы, т. е. выше Гс. Таким образом, под стеклованием в силовых полях или механическим стеклованием следует понимать переход полимеров из высокоэластического в упруготвердое состояние, не связанный с их структурным стеклованием. При охлаждении расплава полимера вначале происходит механическое стеклование, а затем и структурное. Учет различия между процессами механического и структурного стеклования позволяет устранить неясность в механизмах стеклования полимеров под действием внешних сил и при их отсутствии. Температуры структурного Гс и механического стеклования Гм независимы между собой, так как первая зависит от скорости охлаждения, а вторая —от времени действия силы 0 или частоты упругих колебаний V. [c.43]


Смотреть страницы где упоминается термин Релаксация полимеров механическая: [c.488]    [c.338]    [c.82]    [c.277]    [c.164]    [c.13]    [c.584]    [c.6]    [c.152]    [c.55]    [c.58]    [c.273]   
Физика полимеров (1990) -- [ c.205 , c.227 , c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Релаксация механическая



© 2025 chem21.info Реклама на сайте