Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод. Понятие о топливе

    УГЛЕРОД. ПОНЯТИЕ О ТОПЛИВЕ [c.265]

    При низкотемпературном окислении углерода сорбционный механизм развития процесса целиком определяет интенсивность выгорания углерода, количество и качество получаемых продуктов. Заметим, что понятие низкотемпературного окисления углерода топлива является весьма условным. Сорбционный механизм взаимодействия с кислородом даже для наименее активных углей (графит, электродный уголь, высокотемпературный кокс) перестает явно сказываться уже при температурах 600—800° К, и процесс приобретает устойчивый и стационарный характер. В то же время при взаимодействии углерода с углекислотой или водяным паром сорбционные явления оказывают свое влияние даже при температурах 1000—1200° К. [c.144]


    Определение и классификация. Элементы, в которых происходит окисление обычного топлива или продуктов его переработки (водорода, окиси углерода, водяного газа и др.) и за счет изменения изобарно-изотермического потенциала реакции образуется электрическая энергия, получили название топливных элементов. Позднее это понятие было расширено. Топливными элементами стали называться химические источники тока, в которых активные вещества, участвующие в токообразующей реакции, в процессе работы элемента непрерывно подаются извне к электродам. Комплекс батарей топливных элементов и обслуживающих систем, например установка для охлаждения, называется электрическим генератором. [c.48]

    Одним из важнейших факторов при проектировании систем сгорания является длина факела. Этому фактору и были посвящены многочисленные исследования. Однако определение длины факела представляет значительные трудности. При логически напрашивающемся определении длины факела, основанном на визуальных наблюдениях, неизбежно сказывается влияние неодинаковой излучающей способности разных топлив. Определениям на основе измерений состава присущи серьезные трудности, проистекающие от несмешиваемости [50] турбулентных газов. Грубо говоря, под несмешиваемостью подразумевается то, что хотя в среднем смесь имеет стехиометрический состав, в ней существуют островки с избытком воздуха или топлива, вследствие чего полное сгорание не достигается. Предложено [5] определять длину факела по положению максимальной интенсивности спектральной линии двуокиси углерода, что представляется вполне логичным. Все же если принять то или иное определение понятия длины факела, то можно достаточно точно определить длину турбулентного факела. [c.329]

    Для ориентировочной оценки состава газа, получаемого при тех или иных условиях, часто используют понятие об идеальных генераторных газах. Под ними понимают газы, образующиеся при взаимодействии чистого углерода и газифицирующих агентов (О2 и Н2О) с получением только горючих компонентов (не считая азота при использовании воздушного дутья). Характеристиками идеальных генераторных газов служат их состав [% (об.)], выход (м на 1 кг топлива), теплота сгорания (кДж/м ) и коэффициент полезного действия газификации (т]). Последний находят как отношение количества тепла, которое можно получить при сжигании образующегося газа (СО, к количеству тепла, выделяющегося при сжигании израсходованного топлива (Q2). В случае эндотермического процесса знаменатель должен быть увеличен на величину теплового эффекта реакции (<3з)  [c.104]


    Одним из следствий применения моющих присадок является снижение токсичности ОГ двигателя. На рис. 51 представлена взаимосвязь между моющими свойствами присадки Неолин и концентрацией оксида углерода в ОГ в процессе стендовых испытаний. При стендовых испытаниях регистрируется экономия топлива - до 7%. В эксплуатационных условиях экономии топлива может и не быть, так как она зависит от большого количества факторов. Вместе с тем при использовании топлив с моющими присадками появляется понятие, которое может быть условно определено как комфортность вождения . Оно объединяет такие важные для водителя характеристики, как легкость запуска двигателя, форсирования по оборотам, равномерность его работы. [c.116]

    Таким образом, понятия легкоплавкая илц тугоплавкая далеко еще не определяют поведения золы в топочном процессе. В определенных условиях тугоплавкая зола может шлаковаться. Так, например, тугоплавкая зола антрацитов шлакуется вследствие концентрации тепловыделения на поверхности кусков. С другой стороны, легкоплавкая зола горючих сланцев не шлакуется, так как небольшое количество углерода в коксе не в состоянии развивать высоких температур. О шлаковании топлива в газогенераторах судят главным образом по опытной газификации. Метод ВНИГИ по определению шлакообразующей способности топлива [14] представляет в этом отношении интерес. [c.127]

    Горение газообразного топлива. Понятие о горении составляющих газов водорода, тяжелых углеводородов, окиси углерода и метана. Понятие о сухих и влажных горючих газах. Условия горения. [c.102]

    Раствор едкого кали (КОН), обычно используемый в химических газоанализаторах для поглощения СОг, поглощает также и 502. Поэтому для удобства стехиометрических расчетов сгорания топлива введено понятие приведенного углерода, обозначаемого /Ср. -Здесь сера, содержащаяся в топливе, заменяется эквивалентным по потребности кислорода для сгорания количеством углеоода. [c.44]

    При сгорании отдельных элементов топлива выделяется различное количества тепла. При полном сгорании 1 кг топлива выделяется углерода (С) 3 7 МДж, или 8050 ккал, водорода (Н) - 142 МДж, или 33900 ккал, серы (S) - 9,05 МДж, или 2160 ккал. Теплота сгорания Q топлива - это количество тепла, выделяющегося при полном сгорания 1 кг твердого, жидкого или 1 м газообразного топлива. Различают высщую Qb и низщую Qh теплоту сгорания. Высшая теплота сгорания учитывает тепло конденсации водяного пара, который содержался в топливе и образовался при его сгорании. При сжигании топлива в промышленных топках температура дымовых или выхлопных газов превышает 100°С, следовательно, пары воды не конденсируются, а тепло конденсации теряется безвозвратно. В этих случаях применяется понятие низшая теплотворная способность , следовательно, Qh Qb — Qkoh конденсации паров воды. Для нефтепродуктов и углеводородных газов разность между вьюшей и низшей теплотворной способностью составляет 5... 10%. Тепловую эффективность различных топлив принято оценивать по условному топливу , под которым подразумевается топливо, имеющее теплоту сгорания 29,3 МДж/кг, или 7000 ккал/кг. В условных единицах обычно оцениваются запасы различного топлива (угля, торфа, мазута, природного газа). [c.94]

    Значительные затраты теплоты на подогрев и плавление шихты, на протекание эндотермических реакций требует применения на многих плавильных агрегатах использования высококалорийного топлива. Спецификой высокотемпературных процессов в сталеварении является также необходимость использования кислорода. Как уже отмечалось, спецификой нашей страны является сохранение определенного парка мартеновских печей, которые еще обеспечивают около 20 % производства стали. Использование высококалорийных топлив, кислорода осуществляется почти на всех действующих и проектируемых сталеплавильных агрегатах (мартеновские, двухванные печи, дуговые электропечи, САНДы, рафинировочные агрегаты), а также на вспомогательных производствах (сушка ковшей, подофев лома, обжиг огнеупорных материалов и др.). В мартеновском, конверторном, элекфосталеплавильном производстве при продувке металла кислородом организуется своеобразный обращенный топливный факел факел кислорода горит в окружении технологического топлива — оксида углерода. Получили распросфанение и пофужные (например, газокислородные) факелы. Отметим, что в медеплавильных печах при автогенных процессах образуется своеобразный, так называемый, сульфидный технологический факел [11.24,11.85]. Как уже отмечалось (см. кн. 1, га. 6, а также п. 11.8.2), применительно к металлургии понятие факел имеет достаточно широкое, не только топливное, но и технологическое приложение. Совершенствование методов сжигания, улучшение теплоотдачи от факелов является важным фактором энергосбережения. [c.492]

    Понятие жаропроизводительпость топлива было введено Д. И. Менделеевым. Жаропроизводительностью называют максимальную температуру, которая может быть достигнута при полном сгорании топлива, если количество сухого воздуха, участвовавшего в горении, соответствует теоретически необходимому. При этом не учитывают потери тепла, связанные с диссоциацией двуокиси углерода и водяного пара при высоких температурах, а температуру топлива и воздуха принимают равными 0° С. Жаропроизводительность [c.348]



Смотреть главы в:

Общая химия и неорганическая химия издание 5 -> Углерод. Понятие о топливе




ПОИСК







© 2025 chem21.info Реклама на сайте