Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Топливо газообразное горении капли

    Таким образом, повышение температуры подогрева топлива приводит к суш,ественному уменьшению критерия Л < 1 и сокращению периода испарения. Однако полностью задачу горения потока распыленного жидкого топлива нельзя сводить к задаче испарения одной капли. В ряде опытов топливо предварительно доводилось до парообразного состояния и затем вводилось в реакционный объем. Если бы скорость горения определялась одним только испарением капель, то парообразное топливо при вводе вторичного воздуха должно было бы сгореть мгновенно или по крайней мере на очень коротком участке. На самом же деле этого не происходит, как и при горении газообразного топлива. Время и протяженность горения зависят от ряда других факторов гидродинамики, диффузии, скорости реакций в условиях теплообмена между факелом и окружающими стенками и т. д. Процесс горения даже термически подготовленного топлива протекает в течение определенного времени, хотя и приближается по характеру к процессу выгорания газообразного топлива, т. е. к гомогенному горению. При этом для эффективного сгорания термически подготовленного жидкого топлива, вводимого в реакционное пространство в парообразном состоянии, требуется не только хорошее смешение с окислителем, но и температура окислителя не ниже температуры топлива. [c.67]


    При горении жидкого топлива отдельные частицы его, окруженные свободной воздушной средой, прохоДят в огневом процессе стадию испарения, а затем горения. Под воздействием внешнего тепла или создаваемой вокруг них собственной огневой оболочки они испаряются, молекулы паров, перегреваясь, расщепляются и вступают в стадию истинного смесеобразования с молекулами газообразного окислителя, входя с ними в реакцию горения. Вследствие резкого увеличения объема горючего материала, вокруг частицы образуется сфера газифицированного топлива, вытесняющая воздух и не дающая ему доступа к поверхности испаряющейся жидкой капли. Тщательные фотофиксации показывают, что стехио-метрическая зона горения имеет радиус, превышающий радиус самой капли в 10—15 раз. Таким образом, горение возникает уже в объеме, в зоне образования истинной горючей смеси (даже в среде чистого воздуха), и весь внутренний объем такой огневой оболочки занят чисто газификационным процессом. Толщина самой огневой оболочки весьма мала и приближается к геометрической поверхности при горении однородных, отдельных углеводородов и может значительно увеличиться при горении смешанных (нефракционированных) углеводородов. [c.16]

    Существует справедливое мнение, что большинство пламен состоит из газообразных компонентов и что только углерод может окисляться непосредственно кислородсодержащими газами и сгорать как твердое топливо на поверхности. Однако даже в этом случае процесс не всегда ярко выражен, поскольку диффундирующие в окружающую среду летучие компоненты углерода образуют газовое пламя. Жидкие углеводороды перед сжиганием либо полностью испаряются, либо тонко распыливаются (капельное сгорание). Капли испаряются за счет тепла собственно пламени, а горение начинается в тот момент, когда пары вступают в контакт с окружающей атмосферой. В принципе облако горящей углеводородной капли не слишком отличается от газового диффузионного пламени, которое образуется в процессе смешения потока углеводородного газа с окружающим воздухом. Однако имеются и существенные различия. Углеводородная капля, подверженная тепловому воздействию, в том числе лучеиспусканию, со стороны окружающего [c.99]

    Таким образом, материальный баланс факела складывается из суммы некоторого количества частиц топлива и воздуха, еще не вступивших в реакцию, продуктов неполного и полного сгорания. Частицы топлива, образующие с воздухом факел, по составу не являются однородными. В результате испарения и расщепления углеводородов топливо входит в состав факела в виде газообразных углеводородов, жидких тяжелых погонов и твердых частиц углерода. При тонком распылении и хорошем доступе воздуха разложение капли топлива дает очень мелкие частицы углерода, которые легко сгорают, увеличивая радиацию факела. При плохом распылении и плохом смесеобразовании крупные капли выделяют хлопья сажистого углерода, который не успевает сгореть в камере горения и образует копоть. [c.46]


    По мере израсходования легких фракций температура пламени снижается, а зона горения приближается к капле. При достаточно близком расположении фронта пламени температура поверхности капли начинает интенсивно расти, что, по-видимому, приводит к интенсификации процесса разложения топлива, переходящего в процесс термического пиролиза с образованием ароматических газообразных углеводородов и кокса. Сгорание этих углеводородов в зоне пламени, видимо, сопровождается временным повышением температуры и высокой светимостью продуктов сгорания, обусловленной повышенным содержанием раскаленных сажистых частиц. [c.48]

    Найденное соотношение следует использовать при написании уравнений, связывающих возмущенные параметры течения слева и справа от поверхности разрыва S, являющейся, как известно, идеализированной неподвижной плоскостью теплоподвода. Чтобы написать свойства поверхности Е, используем зависимости, приведенные в гл. IV. Из сказанного выше ясно, что в уравнениях, описывающих процесс горения в жидкостных реактивных двигателях, не следует пренебрегать колебанием подачи газообразной массы в камеру сгорания, поскольку даже при постоянной подаче жидкого топлива сгорание (т. е. превращение в газ) может происходить с переменной скоростью. Пренебрегая объемом, занимаемым каплями топлива, можно считать, что моментом поступления массы в камеру сгорания является момент перехода топлива в газообразное состояние. Поэтому напишем уравнения для области горения сг в виде (15.5), не пренебрегая членом бМ.  [c.477]

    В этой главе рассматривается устойчивое горение двух жидких компонентов топлива — окислителя и горючего — в камере сгорания ракетного двигателя, завершающееся образованием горячих газообразных продуктов истечения. После феноменологического описания процесса уделено внимание горению одиночной капли, на котором базируется теория горения распыленного топлива в камере сгорания, и, наконец, дается анализ всего процесса с представлением соответствующих вычислительных моделей. [c.142]

    Стабилизацию пламени в струе дизельного топлива изучали Хоттель, Мэй, Уильямс и Маддокс [11]. Хоттель и Мэй предложили механизм стабилизации пламени, основанный в случае горения газообразных смесей на образовании вспомогательного пламени в первичной вихревой зоне. Эта теория согласуется с данными по влиянию размера капли, скорости потока, диаметра стержня и независимо контролируемой температуры стержня, а также с данными, полученными на стабилизирующих стержнях с внещними ребрами или с внутренней керамической изоляцией. Мэй [12] изучал также влияние летучести топлива, используя смеси пропана и дизельного топлива для создания аналогов топлив с различным давлением паров. В результате добавления пропана достигается увеличение максимальной скорости устойчивого горения и значительно расширяются пределы устойчивости в области богатых смесей. [c.287]

    Указанные недостатки связаны, главным- образом, с неудовлетворительными условиями тепло- и массообмена между продуктами горения топлива и каплями сточной воды и плохим перемешиванием газообразных продуктов в рабочей камере (низкие скорости и отсутствие в большинстве печей закрутки газового потока, затруднительность равномерного распределения капельной смеси в продуктах сгорания). [c.8]

    Недостатки камерных печей связаны, главным образом, с неудовлетворительными условиями тепло- и массообмена хмежду продуктами горения топлива и каплями жидких отходов и плохим перемешиванием газообразных продуктов в рабочей камере (низкие скорости и отсутствие в большинстве печей закрутки газового потока, трудность равномерного распределения капельной смеси в продуктах сгорания). При обезвреживании в камерных печах жидких отходов, содержащих наряду с органическими легкоплавкие минеральные вещества, происходит быстрый износ огнеупорной футеровки [88]. Перевод печей с низкими удельными нагрузками на водоохлаждаемую гарниссажную футеровку приведет к большим перерасходам топлива и охлаждающей воды. [c.46]

    Приведенные выше расчеты и экспериментальные данные относятся к испарению неподвижной относительно воздуха капли. С некоторым приближением они применимы и к свободно оседающим в воздухе мелким капелькам и частицам. Крупные же капли падают довольно быстро, и скорость их испарения при этом заметно повышается. Определение скорости испарения капель, движущихся относительно газообразной среды, представляет интерес для таких процессов, как распылительная сушка, охлаждение распыленной водой и горение распыленного жидкого топлива, а также для метеорологии (испарение дождевых капель). Многие исследователи изучали скорость испарения капель, обдуваемых воздухом с различной скоростью. На основе теоретических соображений, подтвержденных измерением скорости уменьшения диаметра капель, обдуваемых воздушным потоком, скорость испарения в этих условиях можно представить формулой [c.105]


    Рассматриваемая проблема исследовалась только экспериментально и здесь можно привести лишь общие теоретические сО Ображения. Предпо тожим, что струя жидкого топлива, распадающаяся на капли при впрыскивании в газообразную среду, подчиняется рассмотренным выше законам смешения газовььх струй (см. стр. 72) это дает возможность сравнить аксиальное расстояние поверхности стехиометрического состава от форсунки с расстоянием по оси факела, которое проходит изолированная капля до ее полного выгорания. Длина пламеии всегда будет больше каждого из этих расстояний, но такое сравнение позволяет выявить, какой механизм является определяющим смешение струй или горение капель. [c.181]

    Обстановка, создаваемая в костровом очаге горения, во многом напоминает горение жидкого топлива на плошке пли водяном поддоне (фиг. 52 и 54). Принципиальное сходство заключается в том, что во всех этих случаях доступ воздуха к центру протекающего процесса крайне затруднен. На сухой плошке выделяющиеся пары топлива и газы разложения совершенно оттесняют окружающий атмосферный воздух к краевым зонам процесса, где и происходит образование газообразной горючей смеси и ее горение. В случае горения жидкого топлива на водяном поддоне надслойная зона взлетающих и падающих капель, казалось бы, более доступна для проникновения в нее окружающей воздушной атмосферы, так как расстояние между отдельными каплями относительно велико. Однако при горении, когда такая капельная надслойная зона создается, все пространство между каплями практически заполняется парами и газом разложения т01плива, которые подобно предыдущему случаю, в основном оттесняют воздушную атмосферу к внешним участкам процесса, где и возникает зона смешения топливного газа с окружающим воздухом с одновременным пла1менным горением смеси. [c.157]


Смотреть страницы где упоминается термин Топливо газообразное горении капли: [c.365]    [c.427]    [c.271]    [c.100]    [c.189]    [c.100]    [c.100]   
Основы теории горения (1959) -- [ c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Газообразное топливо

Капли

Капля, горение



© 2024 chem21.info Реклама на сайте