Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий металлургия

    Метод имел большое значение в развитии металлургии рубидия и цезия, однако не дает хорошего извлечения металла. Восстановление МеОН магнием (и алюминием) оказалось к тому же очень сложным ввиду гигроскопичности МеОН, летучести магния при температуре процесса (800—900°), частичного образования гидридов металлов и бурного протекания реакции [7, 10]. В дальнейшем в качестве исходных веществ для получения рубидия и цезия были опробованы их хлориды, карбонаты, алюминаты, хроматы, дихроматы, а в качестве восстановителей — Mg, Са, Ва, А], Zr, Fe, Ti и некоторые другие восстановители. [c.153]


    Большой интерес для металлургии цезия представляют разрабатываемые методы прямого его получения из поллуцита. По одному из методов, предложенному Р. Штауффером [ 1911, цезий можно извлекать прямой возгонкой из поллуцита в процессе нагревания гранулированной смеси его с избытком извести и восстановителя (алюминия, кремния, их сплава и др.) при 1050—1150° и 0,001—0,1 мм рт. ст. По другому [c.155]

    МЕТАЛЛУРГИЯ ЛИТИЯ, РУБИДИЯ И ЦЕЗИЯ [c.379]

    Электрохимический метод в металлургии рубидия и цезия в настоящее время почти не используется ввиду высоких значений потенциалов разложения галогенидов , низкой температуры кипения металлов и их высокой растворимости в солевых расплавах ,  [c.383]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Фотометрию пламени используют главным образом для количественного определения щелочных и щелочно-земельных металлов (лития, натрия, калия, рубидия, цезия, магния, кальция, стронция, бария). Метод находит применение в цветной металлургии, при анализе некоторых руд, а также в сельскохозяйственном анализе (в почвенных и агрохимических исследованиях). [c.327]

    Определение рубидия и цезия в рудах, Н. С. Полуэктов, Экспрессные методы анализа при помощи фотометрии пламени в цветной металлургии, Металлургиздат, 1958, стр. 54. [c.437]

    Этот метод имел большое значение в развитии металлургии рубидия и цезия, однако не дает хорошего извлечения металла. [c.98]

    Легирующая добавка лития к алюминиевым сплавам улучшает их прочность и коррозионную стойкость, а к меди - электрическую проводимость. Натрий используется в металлургии для получения металлов и удаления мышьяка из свинца, а также в качестве жидкого теплоносителя в атомной энергетике и химической промышленности. Рубидий и цезий при освещении легко теряют электроны, поэтому служат материалами фотоэлементов. [c.360]


    Восстановление лития, рубидия и цезия из их соединений, руд, минералов и концентратов может быть осуществлено с помощью любого из трех основных методов, применяемых в металлургии редких элементов электрохимического, вакуумтермического все-становления и вакуумтермического разложения солей [1]. [c.379]

    Плющев В Е, Степни Й Д Химия и технология соединений лития, рубидия и цезия М, Химия , 1970, 407 с Погорелый А Д Теория металлургических процессов М, Металлургия , I97I, 502 с [c.336]

    Для металлургии редких металлов чрезвычайно важна комплексная переработка сырья, являющаяся необходимой предпосылкой дальнейшего развития промышленности редких металлов. В Программе Коммунистической партии Советского Союза, принятой ХХИ съездом, говорится Особенно ускорится производство легких, цветных и редких металлов.., . Одной из главных задач в области науки Программа считает совершенствование существующих и изыскание новых, более эффективных методов разведки полезных ископаемых и комплексного использования природных богатств . Это особенно важно для развития промышленности редких металлов, так как полиметаллические руды, главной составной частью которых являются цинк и свинец, часто содержат также (кроме сурьмы и мышьяка) кадмий, таллий, галлий, индий, германий, которые концентрируются в отходах производства свинцовых и цинковых заводов. Эти отходы являются, таким образом, исходным сырьем для получения целого ряда ценных элементов. Пыли и илы сернокислотного прозводства могут содержать селен, теллур, таллий. Шлаки черной металлургии могут служить источником получения ванадия и титана. Золы некоторых углей и сланцев содержат значительные количества германия, ванадия, иногда молибдена, галлия, циркония, редких земель и других элементов. В Калийных солях обнаруживаются рубидий, цезий, в глиноземном сырье — галлий, индий и т. д. [c.20]

    Четырехвалентность аниона [Ре(СК)81 позволяет осуществить огромное множество вариаций состава смешанных ферроцианидов с изменением в широких пределах как числа внешнесферных катионов (с учетом сказанного выше), так и соотношения между ними. Здесь можно оставить в стороне вопрос о разного рода нестехиометрических соединениях смешанных ферроцианидов (относимых обычно к адсорбционньш по этому вопросу еще не накопилось достаточного количества точного экспериментального материала, который позволил бы однозначно говорить об истинной природе явлений, обобщаемых термином адсорбция ). Однако, говоря о смешанных ферроцианидах, число которых огромно, нельзя не отметить возможность их многочисленных применений, основанных на факте дифференцированности катионов внешней сферы. Наиболее типичны в этом отношении смешанные ферроцианиды, в состав которых входят помимо других катионы щелочных металлов. В принципе все они могут рассматриваться как катиониты со значительной (практически теоретической) ионообменной емкостью. В некоторых случаях этот факт не остался в стороне от практического использования (извлечение радиоактивного цезия, а в сущности говоря, и радиоактивных лантанидов из сбросных радиоактивных растворов, выделения рубидия из карналлита и отходов электролитического получения магния и т. д.), однако нет никакого сомнения, что это только начало, и можно утверждать, что смешанные ферроцианиды являют собою тип неорганического ионита, наиболее подходящего для широкого использования. К этому можно добавить, что отмеченная выше дифференцирован-ность внешнесферных металлов позволяет надеяться на использование соответствующих соединений для выделения и разделения многих цветных и редких металлов. Введение предварительного замораживания смешанных ферроцианидов (В. В. Вольхин и др.) устраняет довольно серьезную помеху, обусловленную коллоидной природой смешанных ферроцианидов, вследствие чего их трудно использовать в колоночном варианте ионного обмена. С устранением указанного препятствия ионный обмен с использованием смешанных ферроцианидов может быть осуществлен в промышленном масштабе, что весьма актуально для цветной металлургии. Попутно отметим здесь, что, как оказалось, многие черты, свойственные химии ферроцианидов, характерны также для химии пирофосфатов. [c.283]

    В настоящее время резко возрос интерес химиков к определению малых количеств примесей в чистых веществах. Это связано с организацией и развитием атомной промышленности, которой необходимы сверхчистые уран, торий, бериллий, цирконий, ниобий и др. металлы. Еще более чистые вещества потребовались в электронике и электротехнике (германий и кремний, селен и селени-ды, арсенид галлия, антимонид сурьмы, фосфиды индия и галлия). Для изготовления лазеров нужны чистый рубидий и редкоземельные элементы. Новая техника нуждается также в высокочистых хлориде и бромиде кадмия, фторидах лития и кальция, иодиде калия, бромиде и иодиде индия, цезии высокой чистоты, гидриде цезия и др. Стали существенно более чистыми материалы, с которыми работают в промышленности химических реактивов, в черной и цветной металлургии при производстве жаропрочных и химически стойких сплавов и т. д. [c.9]


    В монографии дан критический обзор псследовани11 г по экстракции металлов одно- и многоатотыми фено-лами различного строения. Подробно рассмотрен механизм процесса, ириведены данные о возможном при-. менении экстракции фенолами в технологии и аналити-1 ческой химии цезия, рубидия и других редких металлов. Книга представляет интерес для работников научно- й исследовательских институтов, аналитических лабора- 4 торий, а также предприятий металлургии редких п 1 цветных металлов. [c.2]

    Литий имеет совершенно исключительное значение для термоядерной техники. В резиновой промышленности он используется при выработке искусственного каучука (как катализатор полимеризации), в металлургии — как ценная присадка к некоторым другим металлам и сплавам. Например, присадка лишь сотых долей процента лития сильно повышает твердость алюминия и его сплавов, а присадка 0,4% лития к свинцу почти в три раза повышает его твердость, не ухудшая сопротивления на изгиб. Имеются указания на то, что подобная же присадка цезия сильно улучш.ает механические свойства магния и предохраняет его от коррозии, однако такое его использование [c.223]

    Натрием широко пользуются при синтезах органических соединений и отчасти для получения иекоторых его производных. В ядерной технике он используется как теплоноситель. Создающий яркий желтый свет электрический разряд в парах натрия является наиболее экономичным (но неприятным по сообщаемым им окружающим предметам оттенкам) источником искусственного освещения с коэффициентом полезного действия тока до 70%. В виде амальгамы натрий часто применяется как энергичный восстановитель. Литий имеет совершенно исключительное значение для термоядерной техники. В резиновой промышленности он используется при выработке искусственного каучука (как катализатор полимеризации), в металлургии — как ценная присадка к некоторым другим металлам и сплавам. Например, присадка лишь сотых долей процента лития сильно повышает твердость алюминия и его сплавов, а присадка 0,4% лития к свинцу почти в три раза повышает его твердость, не ухудшая сопротлвления иа изгиб. Имеются указания на то, что подобная же присадка цезия сильно улучшает механические свойства магния и предохраняет его от коррозии, однако такое его использование вряд ли вероятно из-за дороговизны металла на мировом рынке (1960 г.) и цезий, и рубидий расценивались в 7,5 раз дороже серебра. [c.19]


Библиография для Цезий металлургия: [c.103]    [c.158]   
Смотреть страницы где упоминается термин Цезий металлургия: [c.179]    [c.428]    [c.533]    [c.393]    [c.176]    [c.359]    [c.417]    [c.176]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.379 ]




ПОИСК





Смотрите так же термины и статьи:

Металлургия

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте