Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система гафний — германий

    СИСТЕМА ГАФНИЙ — ГЕРМАНИЙ [c.346]

    Материал в пособии изложен последовательно согласно расположению элементов в группах периодической системы Д. И. Менделеева. Большой объем материала вызвал необходимость расчленить книгу на три части, которые выходят в свет одновременно. В I части излагается химия и технология лития, рубидия и цезия, бериллия, галлия, индия и таллия, во П части — скандия, иттрия, лантана и лантаноидов, германия, титана, циркония и гафния, в П1 части — ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. [c.3]


    Среди всех алементов особенно выделяется углерод своей способностью давать полимеры, включающие огромное большинство элементов периодической системы, а также кремний, для которого особенно характерны кислородсодержащие полимеры. Менее многочисленны полимерные соединения у титана, германия, циркония, гафния и тория. [c.342]

    Одновременно раскрыта и причина деления элементов каждой группы периодической системы на главную и побочную подгруппы. У атомов элементов больших периодов после заполнения электронами подуровня наружного энергетического уровня очередные электроны размещаются на подуровне 3 второго снаружи энергетического уровня (стр. 41). Строение же наружного энергетического уровня в основном сохраняется у десяти элементов подряд. В каждой группе появляются элементы, в атомах которых строение наружного энергетического уровня не сходно с таковым для типических элементов группы. Например, структура наружного энергетического уровня у атомов типических элементов четвертой группы — углерода и кремния — пз пр у германия, олова и свинца — такая же структура — п8 пр -, у титана, циркония и гафния на наружном энергетическом уровне имеется только 2 -электрона (и ), а два электрона находятся на -подуровне второго снаружи энергетического уровня. Однако эти электроны принимают участие в образовании химической связи, поэтому максимальная валентность всех элементов этой группы одинакова и равна четырем. [c.51]

    В главную подгруппу элементов IV группы периодической системы входят углерод С, кремний 51, германий Ое, олово 5п и свинец РЬ, в побочную — титан Т1, цирконий 2г, гафний Н1 и торий ТЬ. [c.358]

    Этими четырьмя предсказанными Менделеевым ка основе первого варианта его системы элементами являются галлий (ат. вес 68), германий (ат. вес—70), гафний (ат. вес— 180) и скандий (ат. вес —45). [c.39]

    Второй вариант дал возможность Менделееву 1) предсказать 12 элементов скандий (5с), галлий (Оа), германий (Ое), технеций (Тс), рений (Не), гафний (НГ), полоний (Ро), астатин (А1), франций (Рг), радий (На), актиний (Ас), протактиний (Ра) кроме того, лантаниды и заурановые элементы. 2) Для 10 элементов изменить принятые в то время атомные веса и соответственно валентность по кислороду в 1,5—2 раза, что казалось тогда почти кощунством. Это элементы бериллий (Ве), индий (1п), ванадий (V), торий (ТЬ), уран (и), лантан (Ьа), церий (Се) и три других лантанида. 3) Исправить атомные веса у 10 элементов. 4) Восемь элементов разместить в системе вопреки принятым в то время представлениям об их сходстве с другими. [c.41]


    Летучие соединения элементов в особо чистом состоянии все шире применяются для получения чистых металлов и полупроводниковых слоев. Наиболее широким классом соединений в этом плане могут быть летучие хлориды элементов 1И—VI групп периодической системы трихлориды бора, алюминия, галлия, фосфора, мышьяка, сурьмы и висмута, тетрахлориды углерода, кремния, германия, олова, титана, циркония, гафния, ванадия и теллура, пентахлориды ниобия, тантала и молибдена, гексахлорид вольфрама, хлористые сера и селен. Эти вещества имеют молекулярную кристаллическую структуру и, как следствие этого, низкие температуры кипения и плавления. Многие из перечисленных хлоридов служат исходными продуктами для получения элементов особой чистоты — бора [1], кремния 12—4], германия [5—7], циркония и гафния [8, 9], мышьяка [10] и др. Особо чистые хлориды имеют также и самостоятельное значение [11, 12] как катализаторы некоторых химических процессов. [c.33]

    Особенно тщательной очистке подвергаются металлы и неметаллы, применяемые в новых отраслях техники. Германий, кремний, бор, мышьяк, сера, селен, иод, водород, азот, гелий, аргон и многие другие элементы, используемые в полупроводниковой, ядерной технике, радиоэлектронике и других областях, должны быть исключительно чисты. Сумма всех определяемых примесей в них не должна превышать 0,001—0,0001% (Ы0- —ЫО- о/о), а в некоторых случаях даже 0,000001% (Ы0- %). При этом в первую очередь внимание обращено на освобождение от примесей, специфически вредных для данной отрасли, как, например, от гафния и бора для ядерной техники, элементов П1—V групп периодической системы для полупроводниковой промышленности. [c.78]

    К середине прошлого столетия было известно шестьдесят четыре элемента. На основании изучения и сопоставления их химических свойств Д. И. Менделеев сформулировал периодический закон и выразил его в форме периодической системы элементов. Гениальное предсказание Д. И. Менделеева о вероятных свойствах неизвестных в то время элементов получило блестящее подтверждение в работах исследователей, обнаруживших в минералах и рудах галлий, германий, скандий, гафний, протактиний и другие элементы. [c.5]

    Другая важная проблема — разработка методов обнаружения и определения микроколичеств элементов. Физические и химические свойства материалов часто зависят от присутствия именно микрокомпонен-тов. Титан и хром долгое время считали хрупкими металлами, которые нельзя ковать и прокатывать, однако недавно было установлено, что эти металлы в очищенном состоянии пластичны и что их хрупкость обусловлена незначительными примесями посторонних элементов. Германий является одним из основных материалов для изготовления полупроводниковых приборов в радиотехнической промышленности, однако он утрачивает свои полупроводниковые свойства, если на десять миллионов атомов германия приходится более одного атома фосфора, мышьяка или сурьмы. Самая незначительная примесь гафния в металлическом цирконии делает последний непригодным для использования в атомной промышленности. Ничтожные примеси титана, ванадия, висмута и некоторых других металлов в сталях значительно изменяют их механические и электрические свойства. Почти все элементы периодической системы входят в очень небольших количествах в состав тканей растений и живых организмов, причем каждый элемент играет впол- [c.16]

    Таким образом, в этой форме периодической системы элементов титан, цирконий и гафний, рассмотренные нами ранее в качестве примера, оказываются в IVB-rpynne, расположенной достаточно далеко от IVA-группы, в которой находятся углерод, кремний, германий, олово и свинец. Высшие степени окисления тех и других (Ф4) совпадают, и их соединения в этих степенях окисления имеют сходные свойства, так как общее число электронов на внешнем уровне [c.24]

    Только при больших концентрациях НР в системах образуются гек-сафторокислоты состава НдМеРе 2Н2О. Кислоты такого состава известны для кремния, германия, циркония и гафния. Таким образом, соединения кремния, германия, циркония и гафния с наибольшей координацией по фтору максимально сближаются по свойствам. Дигидраты [c.90]

    Из всех элементов четверто группы периодической системы Д. И. Менделеева толыад кремний, германий, олово н св нец образуют многочисленные органические соединения. Четыре остальные элемента этой группы — титан, цирконий, гафний и торий — обладают значительно меньше способностью вступать в реакции с образованием соответствующих органических соединигий. [c.143]

    Кремний 0ТН0СР1ТСЯ к четвертой груцпе периодической системы элементов Д. И. Менделеева и по своим свойствам и свойствам своих соединений является типичным представителем этой группы элементов. Если рассматривать соотношения между кремнием и двумя подгруппами IV группы периодической системы элементов, представленными, с одной стороны, германием (экасилицием Д. И. Менделеева), оловом и свинцом и, с другой, титаном, цир-лонием, гафнием и торием, то оказывается, что свойства кремния, ш ак нейтрального атома, определяемые расположением электро-иов на внешней орбите, более близки к свойствам подгруппы, включающей германий (однотипность структуры кристаллической решетки элементов, внеп1ние кристаллографические формы и т. д.). Если же рассматривать свойства атомов, находящихся а5 ионизированном состоянии, т. е. лишенных валентных электронов, то кремний оказывается тогда более близким по структуре н свойствам к элементам подгруппы титана. [c.208]


    Ход теплоемкостей даже для простых веществ в твердом состоянии иногда резко нарушается. На рис. П1.4, а показаны пики на кривых теплоемкости германия и гафния, на рис. П1.4, Ъ и 111.4, с — кривых теплоемкости а-железа и никеля. В то же вре.мя на кривой теплоемкости у-железа пика нет. Комментируя эти отклонения, Ф. Зейц [10, стр. 15 и 16] отмечает, что в первом случае пики связаны с высокой кратностью элементарных ячеек, во втором — с увеличением внутренней энергии системы не только за счет тепловых колебаний, но за счет возбуждения электронов в незаполненных -оболочках. Не имея возможности обсуждать здесь эти очень важные для теории особенности хода кривых теплоемкости, мы хотим обратить на них внимание читателя (см. также П1.21). [c.190]


Смотреть страницы где упоминается термин Система гафний — германий: [c.125]    [c.25]    [c.265]    [c.90]    [c.6]    [c.184]    [c.346]    [c.61]   
Смотреть главы в:

Химия гафния -> Система гафний — германий




ПОИСК





Смотрите так же термины и статьи:

Гафний



© 2024 chem21.info Реклама на сайте