Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура кристаллической решетки

    Новые исследования поверхностей и кристаллов установили, что, кроме обычной топографии поверхности—трещин, выступов, впадин, пустот и др, макродефекты),—имеются нарушения в структуре кристаллической решетки, которые названы микродефектами кристаллической решетки этот вопрос подробно изучен Ф, Ф. Волькенштейном [54]. Он различает следующие дефекты кристаллов микротрещины, включения посторонних соединений и т, д., отличая их от дефектов самой решетки, влияющих на ее устойчивость и упорядоченность. [c.152]


    На симметрию кристаллической решетки -элементов их (п - 1) -электроны практически не влияют. Но если атом металла содержит неспаренные -электроны, то эти электроны могут взаимодействовать с -электронами соседних атомов металла и образовывать дополнительные ковалентные связи. Аналогичное взаимодействие возможно и для р-элементов. В этих металлах существуют металлическая и ковалентная связи одновременно. Ковалентная локализованная связь обладает свойством направленности, а металлическая — ненаправленная связь. Поэтому первый вид связи обуславливает более упорядоченное состояние, а второй — менее упорядоченное, т. е. с большей энтропией. При более высоких температурах на структуре кристаллической решетки и свойствах простого вещества сказывается, в основном, наличие металлической связи. Понижение температуры приводит к уменьшению отрицательного энтропийного (—Т Д5) вклада в изменение энергии Гиббса и начинает преобладать более упорядоченная локализованная ковалентная связь. Типичным примером является олово. Так, стабильной модификацией олова при i > 13,2 °С является мягкий металл ( белое олово), в то время как при более низких температурах устойчивее серое олово, представляющее собой твердый и хрупкий порошок с кристаллической решеткой типа алмаза — кристалла, с ковалентной связью  [c.321]

    Твердые растворы делятся на растворы замещения, внедрения и вычитания. Наиболее распространенными являются твердые растворы замещения, которые образуются при сохранении структуры кристаллической решетки растворителя. При этом атомы, ионы или молекулы одного вещества замещают в узлах кристаллической решетки частицы другого вещества. Образование таких растворов возможно при условии, если оба компонента близки по кристаллохимическим свойствам и размерам частиц. По приближенному правилу В. Юм-Розери твердые растворы замещения образуются тогда, когда размеры частиц двух компонентов отличаются не более чем на 14—15%. Образование твердых растворов замещения не связано с большими напряжениями в кристаллической решетке, в связи с чем устойчивыми оказываются твердые растворы любого состава. При образовании твердых растворов замещения сохраняются неизменными тип решетки и число атомов или ионов в кристаллической ячейке, но изменяются ее объем и плотность. [c.338]

    Процесс начинается обычно в активных точках (центрах) поверхности кристалла (грани, углы, нарушения структуры кристаллической решетки), что приводит к образованию зародыша новой твердой фазы. Дальнейший ход превращений связан с характером-роста зародышей. [c.258]


    Независимо от типа катализаторов первичным актом химического превращения, протекающего на их поверхности, является адсорбция реагентов, поэтому активность гранулы катализатора зависит не только от химического состава активных компонентов, но и от структуры кристаллической решетки, конфигурации и размера пор и их распределения. Существенное значение имеют также эффекты, связанные с транспортом массы и тепла необходимо учитывать влияние возникающих градиентов концентраций и температур. Таким образом, необходимо детальное изучение адсорбционных процессов, сопутствующих химическим реакциям. [c.21]

    В области низких температур ударная вязкость сталей с наибольшим содержанием никеля уменьшается достаточно плавно. Однако для сталей с объемноцентрированной структурой кристаллической решетки (ферритные стали, содержащие железо-а) даже при содержании в них 8,5% никеля порог хладноломкости оценивается температурой всего лишь —195 °С. Поэтому как материалы для изготовления оборудования, предназначен-, ного для жидко водорода ( кип. = —253°С), они не представляют интереса [137]. [c.136]

    Дефекты Шоттки встречаются чаще. Вообще всякие дефекты в структуре кристаллической решетки приводят к увеличению потенциальной энергии ее, что представляет особый интерес для теоретического гетерогенного катализа. В развитие этого вопроса иа основе теории полупроводников большой вклад внесен С. 3. Рогинским и Ф. Ф. Волькенштейном. [c.152]

    Ионная связь в кристаллах. Энергия ионной кристаллической решетки. Для объяснения и предсказания свойств ионных кристаллов широко используется электростатическая теория ионной связи. Теория ионных кристаллов исходит из того, что в решетке действуют электростатические силы притяжения между разноименными ионами и отталкивания — между одноименными. Любой рассматриваемый ион в решетке непосредственно окружен противоионами, а одноименные ионы расположены за ними, и тз1Кое чередование сохраняется во всей решетке. Поэтому кулоновское притяжение разноименных ионов преобладает над кулоновским отталкиванием. Надо учесть также квантовомеханическое отталкивание заполненных электронных оболочек ионов. Однако вклад такого отталкивания невелик и практически компенсируется эффектом поляризации ионов и ван-дер-ваальсовым притяжением . В целом энергия притяжения преобладает над энергией отталкивания и кристаллическая структура оказывается устойчивой. Расстояния между ионами в решетке определяются равновесием сил притяжения и отталкивания. Максимально устойчивой, равновесной структуре кристаллической решетки отвечает минимум энергии. , [c.168]

    Основные структурные элементы полимеров — цепные молекулы. Разнообразие их структуры и гибкость обусловлены различными типами молекулярной организации и механического воздействия. Для иллюстрации этого положения будут рассмотрены характерные элементы структуры и надмолекулярной организации аморфных и частично кристаллических полимеров. В литературе широко обсуждаются взаимосвязи между параметрами цепей кристалла (структура и регулярность их укладки), надмолекулярными характеристиками (степень кристалличности, структура кристаллической решетки, образование зародышей структуры, кинетика ее роста, дефекты) и внешними условиями нагружения [1—3], но эти вопросы не входят в основную тематику данной книги. [c.26]

    Согласно Гиббсу [14] фазой считается масса вещества, однородная по составу и свойствам во всех своих частях, за исключением тонких поверхностных слоев. В более общем смысле фазой считаются однородные части системы, отделенные от среды поверхностью раздела и обладающие химическим составом, термодинамическими и физическими свойствами. Фазы, обладающие одинаковым химическим составом, но различающиеся только структурой кристаллической решетки, называют модификациями. [c.44]

    Следует тем не менее подчеркнуть, что структура кристаллической решетки играет определенную роль, нанример, в эффекте связывания лизоцимом ионов металлов. Так, после вымачивания тетрагонального лизоцима в растворе Gd (III) в течение 20 часов степень заполнения активного центра ионами металлов составляла 24—38%, а в случае триклинного лизоцима эта величина составила 1,6—3,6% после вымачивания в течение 4 недель [33]. Это говорит о различной межмолекулярной упаковке белков в двух данных полиморфных формах кристаллического лизоцима. Тем не менее результаты исследования методами ЯМР [46] и рентгеноструктурными методами [2] в целом показали, что кон- формация лизоцима и ориентация функциональных групп его активного центра весьма близки (если не идентичны) в растворе и кристалле [46]. В цитируемой работе [46], однако, ие обсуждается, что рентгеноструктурный анализ был выполнен при низких или комнатных температурах, а изучение ЯМР — ири 54° С [46]. Иначе говоря, эти исследования выполняли по разные стороны от температуры конформационного перехода фермента (25—30° С 47—54]) и, следовательно, с различными конформациями лизоцима, которые заметно различаются по эффективности связывания фрагментов субстрата и, возможно, по конформации активного центра. Вопрос этот остается пока открытым в литературе, но требует более критического анализа при сопоставлении экспериментальных данных, полученных при различных условиях (в особенности, данных по изучению структуры фермента в растворе и кристаллическом состоянии). [c.158]


    Способ образования ионных решеток показывает, что пустое пространство между ионами ограничено они обладают компактной структурой. Кристаллическая решетка хлористого натрия состроена как бы взаимопроникновением гранецентрированных кубических систем, одна из которых содержит только катионы N3 , а другая — анионы С1 (рис. 66). [c.108]

    Такое тепловое движение приводит к диффузии в твердых телах, хотя коэффициенты диффузии и скорости диффузии, определяющиеся подвижностью или текучестью, гораздо меньше в твердых телах, чем в газах и жидкостях. Соответственно периоды релаксации в твердых телах, т. е. величины вязкости в них, неизмеримо выше, чем в жидкостях той же плотности и того же состава, до тех пор, пока не разрушена структура — кристаллическая решетка. Действительно, известно, что огромные кристаллы, например природные кристаллы кварца, размером в несколько метров, не испытывают заметных остаточных деформаций под действием собственного веса на протяжения геологических периодов, значительно меньших периода их релаксации. [c.175]

    Механизм гидратации алюминатов кальция. Гидратация алюминатов кальция начинается с адсорбции воды на поверхности кристаллов, при этом слой жидкости наблюдается не на всей поверхности, а на отдельных ее активных центрах, роль которых играют следы дислокаций, выходящие на поверхность кристалла, а также атомы кальция, имеющие особое расположение в структуре кристаллической решетки алюмината кальция. Так, в структуре СА из трех видов атомов кальция ( ai, Саг, Саз) активным центром может являться Са В С3А, по мнению А. А. Старосельского с соавторами, имеются две лишние молекулы СаО, которые чрезвычайно активны. Реакция идет по схеме  [c.328]

    Зависимость скорости кристаллизации от температуры кристаллизации выражается кривой с максимумом (рис. 12.8). При высокой температуре, близкой к Тпл, кристаллиты растут медленно вследствие высокой подвижности сегментов, легко отрывающихся от кристаллической решетки. При низкой температуре, близкой к Тс, рост кристаллита затруднен из-за малой подвижности сегментов, которые медленно входят в структуру кристаллической решетки. Скорость кристаллизации для разных полиме- [c.178]

    Теоретически установлено, что нефть в источнике залегания может образовываться из полярных компонентов, содержащих азот, серу, кислород, металлы, а также углеводороды с широким диапазоном изменения молекулярных масс, включая ароматические, нафтеновые, парафиновые вещества. Во время миграции нефти те компоненты, которые являются более полярными или более поляризующими, адсорбируются в первую очередь. Например, компоненты, содержащие аминовые нитрогены, порфирины, могут вести себя как катионы и адсорбироваться ria глинах. Это — одна из-причин формирования весьма неровных границ раздела нефть—вода, особенно в породах, содержащих небольшое количество глин. Концентрация активных компонентов вблизи первоначального водонефтяного контакта приводит к образованию более низких поверхностных натяжений между нефтью и водой, чем в точках, более отдаленных от водонефтяного раздела. Возможно также, что вода вблизи области залегания нефти может иметь-растворенные органические компоненты, такие, как нафтеновые-кислоты или их соли, которые в условиях неоднородного коллектора могут изменить поверхностное натяжение между нефтью-и водой в ту или иную сторону. Кроме того, на характеристику смачиваемости коллекторов заметное влияние оказывает их неоднородность по минералогическому составу, степень шероховатости , чистоты отдельных минеральных зерен, их окатанность, структура кристаллической решетки. Одни минеральные частицы обладают лучшей смачиваемостью, другие— худшей в зависимости от их химического состава и строения кристаллической решетки. [c.207]

    Встречающаяся иногда повышенная электрическая проводимость алмаза связана с различными нарушениями регулярной структуры кристаллической решетки и присутствием примесей. В обычных природных алмазах часть атомов углерода (1 на 1000) замещена атомами азота. [c.162]

    Подробные исследования роста кристаллов были предприняты Р. Каишевым на примере электрокристаллизации серебра. Наблюдения показали, что некоторые осадки отличаются спиральной симметрией и при нарушениях или сдвигах в кристаллической решетке кристаллизация сопровождается спиральными движениями ступени роста (рис. 95). Подобные представления о сдвиговой дислокации в кристаллической решетке объясняют возможность спирального роста граней кристаллов, когда он может происходить непрерывно, без образования двумерных зародышей. Причиной спирального роста грани является такое нарушение структуры кристаллической решетки, при котором ступень роста имеется лишь на части грани толщина этой ступени постепенно уменьшается к середине грани. При росте такая ступень не исчезает, дойдя до конца грани, как на идеальном кристалле, а все время поворачивается, образуя на грани все новые слои. [c.396]

    Если рассматривать ряд аналогичных соединений типа, например МХ, в которых при неизменном X последовательно меняется химическая природа М (или обратно), то в таком ряду на известном этапе может произойти изменение структуры кристаллической решетки. Явление это (т. и. м о р ф о т р о п и я) тесно связано с относительными размерами М и X, причем изменение структуры решетки происходит при достижении отношением радиус М радиус X некоторого определенного значения. Примерами могут служить два приведенных ниже ряда соединений с последовательно изменяющимися соотношениями R катиона R аниона ВеО [c.382]

    Нелишне подчеркнуть здесь, что зона Бриллюэна однозначно определяется структурой кристаллической решетки (точнее, ее решеткой Бравэ). Из определения зоны Бриллюэна следует, в частности, что все обратное пространство может быть плотно заполнено зонами Бриллюэна данного кристалла. Поскольку мы уже имеем рецепт построений ячейки Вигнера—Зейтца и знаем, как построить обратную решетку, то определение зоны Бриллюэна любого кристалла сводится к известным и уже решенным задачам. Так, зоной Бриллюэна г. ц. к. решетки является ячейка Вигнера—Зейтца о. ц. к. решетки, причем если ребро элементарного куба г. ц. к. решетки равно а, то ребро элементарного куба в обратной (о. ц. к.) решетке равно 2яа 1 следовательно, чтобы построить зону Бриллюэна в этом случае, нужно взять о. ц. к. решетку с ребром элементарного куба 2яа 1 и построить в ней ячейку Вигнера—Зейтца. Она и даст нам искомую зону Бриллюэна. Понятие зоны Бриллюэна, как увидим ниже, является чрезвычайно важным в физике кристаллов. [c.81]

    Конформации глюкопиранозных звеньев целлюлозы, а также конформации ее цепей изучают с помощью рентгеноструктурного анализа, ИК- и ЯМР-спектроскопии и теоретического конформационного анализа. Экспериментальные данные и результаты расчетов показывают, что в цепи целлюлозы угол, образованный валентными связями атома кислорода гликозидной связи (угол С(1)-0-С(4)), превышает нормальный валентный угол атома кислорода. Следовательно, цепь целлюлозы находится не в предельно вытянутом состоянии, а в несколько изогнутой форме. При этом создаются необходимые расстояния для образования внутримолекулярных водородных связей. В результате возникновения прочных регулярных межмолекулярных Н-связей жесткие вытянутые цепи целлюлозы образуют высокоупорядоченную надмолекулярную структуру - кристаллическую решетку (см. 9.4). [c.233]

    Энергия ионной кристаллической решетки. Теория ионных кристаллов исходит из того, что в решетке существуют дальнодействую-щие электростатические силы притяжения между разноименными ионами и отталкивания между одноименными. Любой рассматриваемый ион в решетке непосредственно окружен противоионами, а одноименные ионы расположены за ними, и такое чередование сохраняется во всей решетке. Поэтому энергия кулоновского притяжения разноименных ионов преобладает над кулоновским отталкиванием. Надо учитывать такн<е квантовомеханическое отталкивание ионов (см. 28). Однако вклад такого отталкивания невелик, как и вклады поляризации и ван-дер-ваальсового притяжения ионов. Максимально устойчивой, равновесной структуре кристаллической решетки отвечает минимум энергии. Им же определяется и равновесное расстояние между ионами. [c.130]

    Цеолитные i лтализаторы значительно более устойчивы к нагреву и обработке водяным паром. Их структура не деформируется даже при нагреве до 1100 °С. Считается, что повышенная стабильность обусловлена геометрической структурой кристаллической решетки цеолита. Влияют на нее также природа обменивающегося катиона, степень обмена, соотношение оксидов кремния и алюминия. Последнее подтверждает рис. 5.5. Природа обменивающегося катиона оказывает сильное влияние на стабильность цеолитов. Температура, при которой разрушается кристаллическая структура, возрастает с увеличением размера катиона в ряду щелочных металлов, что обусловлено способностью различных катионов заполнять пустоты в кристалле после дегидратации. Трехвалентные катионы образуют наиболее стабильные цеолиты. В промышленных катализаторах содержание натрия поддерживают на минимально возможном уровне для предотвращения деформации структуры цеолита при эксплуатации в реакторе. [c.107]

    Графит. Графит — темно-серое непрозрачное вещество, со слабым металлическим блеском, мягкое, слабо проводящее электрический ток. Графит тугоплавок, мало летуч и при обычной пемпературе химически инертен. Структура кристаллической решетки графита покапана на рис. 53. Кристаллы графита построены нз параллельных друг другу плоскостей, в которых расположены атомы углерода по углам правильных плестиугольпиков. Расстояние между соседними атомами углерода (сторона каждого шестиугольника) 143 пм, между соседними плоск о-стями 340 им. Каждая промежуточная [c.350]

    До настоящего времени взаимное влияние этих двух механизмов эволюции структуры (изменение дефектной структуры кристаллической решетки и изменение распределения атомов разных химических элементов) в ходе отжига деформированных сплавов и интерметаллидов изучено недостаточно. Несомненно, что исследование их взаимного влияния, так же как и исследование взаимосвязи между структурными изменениями и изменениями свойств, займет важное место в дальнейших исследованиях, направленных как на понимание фундаментальных процессов, протекающих при отжиге материалов, подвергнутых ИПД, так и на исследование термо стабильно сти субмикрокристаллических материалов при их промышленном применении. [c.147]

    Влияние металла катода выражается в том, что осаждение металла на нем связано с затратой или выделением некоторого количества энергии вследсгвие того, что структура кристаллической решетки металла катода бывает отлична от структуры решетки осаждающегося металла. Кроме того, осаждаемый металл может вступить во взаимодействие с металлом подкладки. Это выражается [c.51]

    Рентгеноструктурный анализ (рентгенография) используется для изучения структуры кристаллической решетки целлюлозы - определения параметров ее элементарной ячейки, размеров кристаллитов, а также степени кристашгичности. Вскоре после разработки Лауэ основ рентгенографического анализа Нишикава и Оно в 1913 г. получили первую рентгенограмму целлюлозы рами. В настоящее время используют современный метод регистрации рентгеновских лучей, рассеянных кристаллической решеткой, - дифрактометрический с получением дифрактограммы. Дифрактограмма представляет собой кривую зависимости интенсивности рассеянных лучей I от угла рассеяния 20, где 0 - брегговский угол в законе Вульфа - Брегга (см.5.4). [c.241]

    Изменение электрокаталитических свойств металлов при переходе к их дисперсным формам, очевидно,, определяется суммарным влиянием большого числа факторов преимущественным выходом тех или иных граней, большим числом биографических дефектов кристаллической решетки,, особенностями пористой структуры, адсорбцией микропримесей и т. д. Выявить парциальное действие тех или иных факторов пока не удается. Работ по исследованию влияния дефектов структуры кристаллической решетки на электрокаталитические процессы проводится мало, и выводы этих работ довольно противоречивы. Однако в пределах тех изменений дефектности поверхности гладких электродов, которые вызывают такие операции, как химическое травление, механическое полирование, наклеп, высокотемпературный отжиг и т. п., существенных изменений скоростей электрокаталитических процессов с участием органических веществ на металлах группы платины не установлено. Очевидно, после этих операций с электродом доля дефектных мест остается весьма ма-ло1(, к тому же их влияние в сильной мере снижается за счет г рочыой хемосорбции органических молекул. [c.296]

    Следствием своеобразия структуры кристаллической решетки графита является сравнительно малая прочность его вдоль слоев (т. е. по плоскостям спайности кристалла) при значительной прочности самих слоев — графит легко расчленяется на чешуйки по направлению АБ. Этим и объясняется мягкость графита (используется в карандашном производстве), а также хорошая смазочная способность (при графитной смазке один его сло11 легко скользит вдоль другого, тем самым уменьшая трение, например между металлическими поверхностями). Повышенное расстояние между слоями в кристаллической структуре графита приводит к пониженной плотности его по сравнению с алмазом. Так, у графита эта плотность составляет 2,3 г см , а у алмаза 3,51 г/смК  [c.119]

Рис. V-8. Элементарная ячейка Рис. V-9. Внутренняя структура кристаллической решетки Na l Na l как ионного кристалла плот- Рис. V-8. <a href="/info/4904">Элементарная ячейка</a> Рис. V-9. Внутренняя структура кристаллической решетки Na l Na l как <a href="/info/69397">ионного кристалла</a> плот-
    Можно поэтому говорить, что структура кристаллической решетки FeSa в общих чертах аналогична структуре Юа) и Ва + Юа] , в которых доказано существование катионов и Ва и анионов Юа , и в некоторой степени напоминает структуру решетки тетраоксида калия КаО , установленную Нейманом, В. И. Касаточкиным и В. В. Котовым на основании магнитных измерений и рентгенографических исследований, с той лишь разницей, что комплекс [Oj] в тетраоксиде калия несет один отрицательный заряд. [c.358]

    Иодид серебра Agi в природе встречается крайне редко. Известны 3 модификации Agi а, р и 7, отличающиеся структурой кристаллической решетки. Искусственно полученный Agi имеет желтую окраску. В воде еще труднее растворим, нежели остальные галогениды серебра точно так же чувствителен к свету. Очень трудно образует комплекс с аммиаком, но с концентрированными растворами иодида щелочного металла и с иодистоводородной кислотой дает комплексы типа [Aglj] и [Aglg] . [c.408]

    С увеличением массы одинаковых по форме газообразных молекул в ряду СН , F , СВГ4, возрастают и значения энтропии этих соединений— 186,2 261,5 и 358,2э. е. соответственно. Энтропия не может быть отрицательной. При полной упорядоченности структуры кристаллической решетки (при температуре ОК) энтропия может быть равна нулю. Значения стандартных энтропий индивидуальных веществ представлены в приложении 1. [c.57]

    Каждому из описанных типов сплавов отвечает определенная структура кристаллической решетки. Так, г кристаллических решетках твердых сплавов атомы от дельных металлов перемешаны. В кристаллической ре шетке металла-растворителя некоторые его атомы заме щены атомами растворенного металла. Это происходит в тех случаях, когда атомы металла-растворителя и рас творенного металла близки по размерам. При большо разнице размеров атомы растворенного металла распо латаются не в узлах кристаллической решетки, а в про межутках между ними. [c.398]

    Для монокристалла графита характерна вьюокая анизотропия свойств, обусловленная слоистой структурой кристаллической решетки. Свойства монокристалла принято рассматривать относительно главных кристаллографических направлений - параллельно гексагональной оси и перпендикулярно к ней (параллельно базисной плоскости). Анизотропия свойств присуща и поликристаллическим искусственным графитам Ее величина определяется способом получения материала. Поэтому свойства искусственных графитов рассматривают либо относительно преимущественной ориентации кристаллографических осей, либо относительно направления приложенного давления при формовании заготовок. Анизотропия (для анизотропных материалов) учитывается как сумма  [c.56]

    При образовании твердой фазы возникает кристаллизационное перенапряжение, причиной которого является замедленность вхождения атомов в упо-ряюченную структуру кристаллической решетки твердого металлического [c.237]

    Для тушения его используют фторид кальция, для тушения непригодны азот, диоксид углерода и хладоны. Плутоний еще более чувствителен к возгоранию, чем уран. Уран, торий и плутонии весьма пирофорны в порошкообразном состоянии и легко возгораются от разрядов статического электричества. Компактный плутоний самовоспламеняется при 600 °С. Цирконий и магний значительно более активны и практически не горят только в атмосфере благородных газов, например аргона. Графит возгорается с большим трудом и только в накопленном состоянии, горит он гетерогенно, при высоких температурах реагирует с водяным паром. При температурах до 200—250 °С в графите под воздействием проникающей радиации искахоет-ся структура кристаллической решетки, и вследствие этого накапливается скрытая энергия (эффект Вигнера). Если эта энергия регулярно не рассеивается путем отжига (повышения температуры), то она может накапливаться до определенной точки и затем внезапно выделяться с резким повышением температуры, которая может привести к пожару. Горение графита ликвидируют обычно диоксидом углерода или аргоном. Можно применить и большие массы воды. Высокая пожарная опасность создается при применении в качестве теплоносителя натрия или калия. Хотя они горят медленно, но тушение их затруднено и требует специальных средств пожаротушения. [c.93]

    Одним из определяющих моментов в надежности водно-химического режима энергоблоков является эксплуатация трубок ПВД при температуре среды около или выше 200°С. Целесообразно проанализировать условия формирования защитных пленок на стали перлитного класса в указанных условиях. Как известно, наиболее хорошими защитными свойствами обладает пленка магнетита, являющегося примером окисла с так называемой шпинельной структурой кристаллической решетки, характеризующейся высокой сплошностью в магнетите на каждый ион двухвалентного железа приходятся два иона трехвалентного — РеОРедОз. Согласно реакции Шнкорра (7-4) при температуре выше 200°С в нейтральных средах через небольшой промежуток времени образуется компактный защитный слой магнетита  [c.133]

    Кристаллический изотактический иолипроиилен, подобно преобладающему большинству органических веществ, характеризуется моноклинной структурой кристаллической решетки [2, 12, 16] со следующими константами [14] а = 6,65А 6 = 20,96 Л с = 6,50А Р = 99°20. Пространственная группа СгЬ —С2/с. [c.67]


Смотреть страницы где упоминается термин Структура кристаллической решетки: [c.111]    [c.362]    [c.362]    [c.191]    [c.89]    [c.362]    [c.98]    [c.380]    [c.202]   
Свойства редких элементов (1953) -- [ c.348 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние структуры кристаллической решетки и химического состава стали на ее водородопроницаемость

Влияние фазовых переходов и структуры кристаллической решетки на твердофазную полимеризацию

Геометрическая теория структуры кристалла Кристаллическая решетка

Дефекты кристаллической решетки трео и зритро-Диизотактические структуры

Кристаллическая структура

Кристаллическая структура молекулярных решеток

Кристаллические решетки

Определение размеров частиц и блоков в мозаичной структуре кристаллов, а также степени микроискажений кристаллической решетки

Полимеризация твердофазная влияние структуры кристаллической решетки

Реакционная способность зависимость от структуры кристаллических решеток вещест

Структура и параметры кристаллической решетки

Структура кристалла, кристаллическая решетка и правильная система точек

Структуры решетка



© 2025 chem21.info Реклама на сайте