Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внутренняя энергия взаимодействие между системам

    Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия — это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое. [c.85]


    При математическом описании потенциальной энергии ее разделяют на внешнюю и внутреннюю. Внешняя потенциальная энергия системы материальных частиц обусловлена действием на нее внешних потенциальных сил, т. е. сил, приложенных со стороны тел, не входящих в систему. Внутренняя потенциальная энергия системы обусловлена внутренними силами взаимодействия между частицами и связана у жидкостей и газов с объемной деформацией [c.19]

    Рассмотрим баланс внутренней энергии однородной многокомпонентной системы, полагая, что любой процесс в ней сводится к обмену обобщенными координатами между компонентами — подсистемами, а всякое взаимодействие ее с окружающей средой — [c.60]

    Первое слагаемое представляет изменение внутренней энергии систем (1) и (2) при переходе от изолированных систем к взаимодействующей паре (1) - -(2). Второе слагаемое дает ту часть энергии взаимодействия, которая непосредственно зависит от электростатического взаимодействия между системами (1) и (2). [c.38]

    Надо отметить, что величина АН характеризует как изменение внутренней энергии AU, так и изменение объема AF системы нри растворении. Если энергия взаимодействия между разнородными молекулами больше, чем между однородными, происходит выделение тепла при растворении (экзотермическое смешение, AU < 0). Если взаимодействие между разнородными молекулами меньше, то происходит поглощение тепла (эндотермическое растворение, AU 0). В случае нулевого теплового эффекта — атермическое растворение. Величина S характеризует расположение элементов в системе. При уменьшении упорядоченности расположения элементов в системе S растет (Д5 > 0). [c.57]

    Описание растворов электролитов основывается на знании внутренней потенциальной энергии этой системы. Указанная величина, в свою очередь, однозначно определяется энергией взаимодействия между ионами и функцией их радиального распределения в растворе. [c.12]

    Не вдаваясь в детали, мы можем сказать, что вероятность этих внутренних изменений в единицу времени пропорциональна квадрату матричного элемента энергии взаимодействия между полем и атомами. Матричный элемент берется в представлении, в котором состояния обеих частей классифицированы с помощью квантовых чисел. При этом используется тот элемент, первый индекс которого характеризует начальное состояние, а второй индекс характеризует конечное состояние. Полная вероятность перехода будет очень мала, за исключением случая, когда начальное и конечное состояния всей системы имеют одинаковую (или почти одинаковую) энергию. [c.86]


    Необходимо отметить, что в противоположность работе и теплоте, само понятие о которых предполагает взаимодействие между системой и средой, внутренняя энергия не связана со средой, а зависит только от состояния системы, т. е. является функцией ее состояния. При переходе от одного состояния к другому внутренняя энергия изменяется на определенную величину, зависящую только от начального и конечного состояний и, в противоположность работе и теплоте, не зависящую от пути перехода. По этим причинам функцию и можно рассматривать как характеристическую, определяющую энергетическое состояние системы. Таким образом, для конечного процесса из уравнения (1) получаем  [c.12]

    При элементарном акте взаимодействия между системой и окружающей средой внутренняя энергия системы изменится на бесконечно малую величину йИ. Уравнение (4.1) для этого случая напишется в виде [c.16]

    Газовое состояние вещества — более вероятное при высоких температурах — характеризуется большим запасом энтальпии и высокими значениями энтропии. Это говорит о полном беспорядке в системе, состоящей из частиц, совершающих индивидуальные поступательные движения с различными скоростями и практически не взаимодействующих друг с другом. Чем меньше энергия взаимодействия между двумя частицами, находящимися в контакте (слабые связи), тем больше запас внутренней энергии оистемы, и тогда уже при низких температурах вещество способно находиться в газовом состоянии. К таким веществам относятся прежде всего инертные газы, атомы которых испытывают друг к другу очень слабое притяжение (см. 4 этой главы). По мере увеличения размеров частиц вещества их способность к взаимному притяжению (в частности, из-за более легкой поляризации) возрастает. Это проявляется в повышении температур кипения веществ (рис, 40) с возрастанием массы их частиц, [c.99]

    Из соотношений (1.15), (1.16) следует, что если взаимодействие между системой и средой происходит в условиях адиабатической изоляции, то изменение внутренней энергии системы обусловлено только работой, производимой системой над окружающей средой  [c.27]

    Если же взаимодействие между системой и средой происходит в условиях диатермической изоляции, приращение внутренней энергии системы определяется величиной поглощенной теплоты  [c.28]

    Внутренняя энергия. Химическая система может состоять из различных частиц молекул, атомов или ионов. Каждая из частиц обладает энергией, которая обусловлена ее поступательными и вращательными движениями, колебаниями атомов и атомных групп в молекулах (рис. 5.1), силами притяжения и отталкивания, действующими как внутри частиц, так и между ними, внутриядерными взаимодействиями и т. д. Суммарный запас энергии системы, складывающийся из сильно различающихся энергий отдельных частиц, называют внутренней энергией системы. Ее обозначают буквой II. Внутренняя энергия — функция состояния системы, т. е. ее характеристика, в отличие от физических условий существования системы, которые называют параметрами. К числу параметров системы относятся температура Т, давление р и объем V. Определить экспериментально абсолютное значение внутренней энергии невозможно. Однако можно измерить изменение внутренней энергии  [c.41]

    Наиболее общими характеристиками систем являются масса вещества т, содержащегося в системе, и внутренняя энергия Е системы. Масса вещества системы определяется совокупностью масс молекул, из которых она состоит. Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними. [c.11]

    Внутренняя энергия. Внутренней энергией мы называем энергию, заключенную в системе. При этом обычно не учитывается кинетическая энергия системы в целом и потенциальная энергия системы во внешнем поле (хотя в некоторых случаях потенциальную энергию можно рассматривать как часть внутренней энергии). При микроскопическом рассмотрении это означает, что внутренняя энергия равна сумме кинетической энергии отдельных молекул и энергии взаимодействия между ними. Однако термодинамика обычно не затрагивает вопроса о природе внутренней энергии. Первый закон термодинамики утверждает, что внутренняя энергия является функцией состояния. Аддитивную постоянную, входящую во внутреннюю энергию, можно фиксировать, выбрав некоторое исходное состояние за нулевую точку отсчета внутренней энергии. На фиг. 2 изображена внутренняя энергия воздуха как функция температуры и давления. Точка С является критической (см. пример 8). [c.17]

    Это значит, что изотермическое разбавление такого раствора (добавление к нему растворителя) не изменяет внутреннюю энергию и энтальпию системы, не сопровождается поглощением или выделением теплоты. Средние расстояния между частицами растворенного вещества так велики, что можно не принимать во внимание взаимодействие между ними. Взаимодействие между молекулами растворителя (п и растворенного вещества (По) в общем случае следует учитывать. Добавление к раствору, например, одного моля растворяемого вещества соответствует такому изменению энтропии н других термодинамических функций, как если бы этот моль [c.234]


    В результате взаимодействия системы с окружающей средой происходит обмен энергией между ними, и внутренняя энергия системы V изменяется на величину АП. Такой обмен может происходит в двух формах теплоты и работы. [c.14]

    При системном анализе процессы измельчения- смешения сыпучих материалов [4] определяются как процессы взаимодействия ансамбля измельчаемых и смешиваемых частиц различного сорта и различных размеров с несущей средой и между собой при наличии внешних воздействий на двух уровнях иерархии. На локальном (микро) уровне действуют внешние поверхностные и массовые силы и силы взаимодействия между несущей фазой и частицами (силы Архимеда, Стокса, Жуковского и Магнуса). При определенных свойствах обрабатываемых веществ и несущей среды возможны дополнительные электромагнитные силы. В результате этого в системе происходит перенос массы, импульса, энергии и заряда. Внешняя механическая энергия или энергия другого вида, превращенная в нее внутри системы, расходуется на работу против сил молекулярного сцепления и электростатического взаимодействия, преодоление сил взаимодействия внутри частицы, на накопление упругих деформаций, переходящих в пластические и во внутреннюю энергию. Частично энергия упругих деформаций создает в системе дефекты, микронапряжения и микротрещины. [c.113]

    В термодинамике все рассуждения относятся к системам и процессам, протекающим в них. Под системой понимают ограниченную часть пространства (выделяемую физически или мысленно), в которой все составляющие и фазы находятся во взаимодействии. Термодинамической называется система, в которой совокупность тел может обмениваться между собой энергией и веществом с физическим и химическим превращением веществ. Поверхность раздела отделяет внутреннюю среду от внешней. Система, которая не обменивается с внешней средой энергией, называется адиабатической. [c.7]

    Зависимость (212.2) может быть представлена графически в трехмерном пространстве или в виде изоэнергетических линий в двухмерной системе координат п и гг. Расчет энергии такой системы, состоящей из 3 ядер и 3 электронов, был сделан методом МО ССП с расширенным базисом. На рис. 188 приведены результаты одного из таких расчетов. Изоэнергетические линии системы вычерчены при изменении п и гг. Диаграмма подобна топографической карте. Рассмотрим, как будет изменяться внутренняя энергия при столкновении молекулы АВ с атомом С. Внутренняя энергия исходного состояния молекулы АВ (На) принята равной —440 кДж/моль, энергия атома С (атома Н) — равной нулю. Пусть кинетическая энергия поступательного движения молекулы АВ и атома С по линии, соединяющей центры атомов, будет равна (,. Примем за исходное состояние системы состояние, обозначенное на рис. 188 точкой 1. В этом состоянии атом С находится на расстоянии г% =2 10 м. Энергия межмолекулярного взаимодействия между АВ и С невелика, поэтому внутреннюю энергию системы можно принять равной энергии исходного состояния. При приближении атома С к молекуле АВ преодолеваются силы отталкивания между одноименно заряженными ядрами атомов В и С. Внутренняя энергия системы при этом возрастает. Точка, характеризующая состояние системы, будет двигаться по линии минимальных энергетических градиентов, изображенной на рис. 188 пунктиром. В интервале между точками 2 ж 4 система находится на перевале, разъединяющем исходное и конечное состояния. На вершине энергетического барьера, в точке <3, при г = гг, атомы А и С энергетически тождественны. Система находится в переходном состоянии (см. 210). Однако в состоянии атомов А и С есть существенное различие. Атом С продолжает движение по направлению к атому В за счет кинетической энергии поступательного движения, а атом А совершает колебательное движение относительно атома В. На вершине потенциального барьера возникает взаимодействие в форме притяжения между атомом С и молекулой АВ, обусловленное обменным взаимодействием энергетических уровней молекулы АВ и атома С. В точке 4 система находится в состоянии мо-кулы ВС и атома А. На пути от точки 4 к точке 5 энергия отталкивания переходит в энергию поступательного движения молекулы ВС и атома А. Внутренняя энергия системы уменьшается до энергии конечного состояния (молекулы ВС и атома А), равной —440 кДж/моль. [c.570]

    Таким образом, на основании опытов Гей-Люссака и Джоуля мы подошли к понятию о внутренней энергии идеального газа. При объяснении результатов этих опытов следует подчеркнуть особенности идеального газа. Идеальный газ отличается полной независимостью всех движущихся частиц друг от друга, что обусловлено отсутствием каких бы то ни было сил притяжения или отталкивания между ними. Поэтому для такой системы безразлично, в каком объеме она распределена. Запас энергии системы определяется суммой энергий движения частиц. Поэтому плотность идеального газа не играет роли, ибо энергия данной системы будет одна и та же для частиц, близко расположенных друг от друга (газ большой плотности), и для частиц, располагающихся на значительном рас-- стоянии (разреженный газ с малой плотностью), так как между частицами нет взаимодействия. Поэтому внутренняя энергия идеального газа не зависит от объема и давления. [c.32]

    Курс состоит из двух частей. В первой части рассматривается строение вещества. Здесь проводится подход к химической системе как системе из взаимодействующих электронов и ядер, из которых формируются атомы, многоатомные частицы, а затем и макроскопические вещества. В неразрывной связи со строением описывается состояние соответствующих систем. С этой целью авторы отказались от традиционной компоновки материала. В частности, понятия внутренней энергии и энтропии вводятся в первой части курса в связи с изложением вопросов строения и состояния макроскопических систем. Это же касается некоторых понятий теории растворов, как представления о предельно разбавленном и идеальном растворе, которое связано именно с особенностями строения растворов, природой взаимодействия между частицами раствора. Вторая часть посвящена теории химического процесса. В ней рассматриваются термодинамика и кинетика химических реакций. [c.3]

    Важнейшее свойство идеального газа — свободное движение частиц в пространстве при отсутствии взаимодействия между молекулами. Поэтому энергия и энтропия каждого компонента зависят только от его природы, объема системы и температуры, но не от наличия других компонентов. При этом внутренняя энергия [c.83]

    Окружающие нас тела обладают определенным запасом энергии. Эта энергия слагается из энергии вращательного и поступательного движения молекул, энергии внутримолекулярного колебания атомов, движения электронов вокруг ядра, внутриядерной энергии, энергии взаимодействия молекул между собой и др. Все перечисленные виды энергии, за исключением кинетической энергии системы в целом и потенциальной энергии положения ее в пространстве, составляют внутреннюю энергию, системы и. Величина внутренней энергии зависит от природы составляющих ее веществ, их массы и внешних условий. Абсолютное значение внутренней энергии любой системы не может быть измерено, одна ко опытным путем удается установить изменение внутренней энергии (АО) при переходе системы из одного состояния в другое, что оказывается достаточным для целей термодинамики  [c.11]

    Каждая система характеризуется ее внутренней энергией (обозначается П). Эта энергия складывается из энергий образующих ее составных частей, в том числе молекул, атомов, электронов, ядер, внутриядерных частиц и т. д. Она представляет собой сумму кинетической энергии движения указанных частиц и потенциальной энергии их взаимодействия между собой, а также соб- [c.162]

    Важнейшей характеристикой термодинамической системы является ее внутренняя энергия. Хотя классическая термодинамика не рассматривает строения вещества на молекулярном уровне и по существу не раскрывает физического смысла внутренней энергии, полезно указать здесь, что под этим понятием прдразумева-ет молекулярная физика. Внутренняя энергия включает в себя все виды энергии частиц внутри системы (энергию ядер, электронов, энергию связей атомов в молекулы, энергию взаимодействия между молекулами, вращательную, поступательную, колебательную и т. д.). Она не включает только кинетическую и потенциальную энергию всей системы как целого. Если включить и эти виды энергии, то получится полная энергия системы. [c.10]

    Молекулы жидкости и газа находятся в состоянии хаотического движения, обладая при этом кинетической энергией и энергией взаимодействия между собой. Суммарную энергию хаотических движущихся молекул будем называть внутренней энергией жидкостей. Внутреннюю энергию единицы массы жидкости (удельная внутренняя энергия) обозначим через е. Ее размерность в системе СИ [Дж/кг], в системе МКГСС [ккал/кГ]. Величина е характеризует только запас внутренней энергии, но не определяет процесс передачи ее от одной части жидкости к другой. Для этого служит другая величина, также определяемая хаотическим движением молекул, - температура Т. Измеряется она в градусах по шкале Кельвина (К). Удельная внутренняя энергия связана с температурой соотношением  [c.22]

    Внутренняя энергия складывается из кинетической энергии движения частиц изучаемой системы (атомов, молекул, ионов, электронов и др.) и энергии взаимодействий. между ними (внутри- и межмолеку.тарных). В термодинамике определяется лишь из.менение внутренней энергии в различных процессах (Д /). Внутренняя энергия, как функцш состояния систе.мы вводится первым началом термодинамики, согласно которому разность. 1ежду теплотой ЪО, переданной систе.ме, и работой 5IV, совершаемой системой, зависит только от начального и конечного состояния системы и не зависит от пути перехода, т.е. представляет собой изменение функции состояния  [c.57]

    Молекулы жидкости и газа находятся в состоянии хаотического движения, обладая при этом кинетической энергией и энергией взаимодействия между собой. Суммарную энергию хаотически движуш,ихся молекул будем называть внутренней энергией газа. Внутреннюю энергию единицы массы жидкости или газа (удельная внутренняя энергия) обозначают через е. Ее единица в СИ — Дж/кг, в системе МКГСС — м /с1 Соотношение различньгх единиц энергии (работы, теплоты) представлено в прил. 3.2. [c.147]

    В газах наблюдается обратное соотношение кинетическая энергия настолько велика по сравнению со средней энергией взаимодействия между частицами, что частицы газа могут удерживаться в некотором объеме только благодаря наличию внешних непроницаемых для частиц стенок распределение частиц в объеме газа близко к хаотическому. При не очень высоких давлениях газообразному состоянию соответствует малая плотность системы. В жидкостях средняя потенциальная и средняя кинетическая энергии частицы близки по величине. Для жидкости характерна плотность того же порядка, что и для кристаллов, а следовательно, того же порядка энергия межмолекулярных взаимодействий. Но у жидкостей, в отличие от кристаллов, отсутствует правильная периодическая структура. Средняя потенциальная энергия вещества в жидком состоянии (соответственно внутренняя энергия) выше, чем в твердом при той же температуре плавление сопровождается возрастанием внутренней энергии (и энтальпии) А(/пл >0, > 0. Энтропия жидкости также больше, чем энтропия кристалла при той же температуре (А5пл > 0)- Если в кристаллах движение молекул сводится практически к колебаниям около положений равновесия, то в жидкостях существенную роль играет трансляционное движение молекул. Молекулы жидкости удерживаются вместе благодаря силам притяжения, но в то же время они очень подвижны. Этим объясняется характерное свойство жидкости сохранять свой объем, но не форму (текучесть). [c.393]

    Особо важное значение в химических процессах имеет термодинамический потенциал, т. е. изменение свободной энергии системы (А/ ). Выражая собой ту часть внутренней энергии системы, которая способна превращаться в полезную работу, величина ДР данного химического процесса служит тем самым мерой химического сродства реагирующих компонентов, т. е. мерой их реакционной способности. Чем больше абсолютная величина изменения свободной энергии или, что то же, чем больше значение максималыюи работы данного химического процесса, тем полнее они вступают между собой в химическое взаимодействие. Если мы говорим, что данные вещества реагируют между собой недостаточно энергично, то это означает, что они имеют небо,пьшое изменение свободной энергии в наблюдаемом процессе химического взаимодействия или, что то же, максимальная работа, которую требуется затратить на этот процесс, очень велика [c.167]

    В этой конформации две группы атомов водорода по обе стороны плоскости кольца сближены по направлению к центру молекулы и конформационно взаимодействуют между собой. Благодаря этим взаимодействиям в молекуле создается дополнительное внутреннее напряжение. При этом сближение двух Н-атомов приводит к перекрыванию их ван-дер-ваальсовых радиусов. Удаление этих сближенных атомов и образование новой С—С-связи уменьшает энергию системы, делая ее менее напряженной. Указанные стерические факторы и энергетический эффект благоприятствуют протеканию трансаннулярной Сз-дегидроциклизации циклооктана с образованием системы пенталана. Протекание этой реакции в присутствии Pt/ осуществляется, как нам кажется, через промежуточное образование циклического переходного состояния. Образование последнего происходит, по-видимому, по схеме, сходной с механизмом гидрогенолиза циклопентанов и Сз-дегидроциклизацни алканов (для упрощения схемы на ней не показаны атомы катализатора, соединенные со сближенными атомами Н и С адсорбционными связями)  [c.155]

    Из этого соотношения следует, что работа сил трения йА для выделенного элементарного объема системы превраш,ается в теплоту dQ, а кроме того, расходуется на увеличение внутренней энергии на химическое взаимодействие (%1с1п1г) и некоторые другие виды превращений. Указанные параметры тесно связаны между собой. Исходя из энергетической гипотезы, изнашивание (отделение) материала наступает тогда, когда внутренняя энергия 7 достигает критического значения. Однако в общем случае в присутствии химически активных компонентов износ определяется также глубиной химических превращений. В свою очередь, оба перечисленных фактора зависят от dQ. [c.250]

    Феноменологический состоит в изучении свойств взаимодействующих объектов системы путем анализа условий и количественных зависимостей превращений энергии, происходящих в системе. Этот подход не связан с какими-либо конкретными представлениями о внутреннем строении объектов системы, силах взаимодействия между ними и характере их движения. Подход макроскопичен от начала до конца и в его основе лежат некоторые априорно вводимые постулаты (начала или законы термодинамики), которые получены на основании громадной экспериментальной практики, не противоречат ни одному из известных физических явлений и обладают, таким образом, очень высокой степенью общности. Феноменологический [c.23]

    При сближении двух тел до расстояний, сопоставимых с дальностью действия межмолекулярных сил, между ними возникают поверхностные силы взаимодействия, которые действуют лишь в сфере молекулярного поля и на расстояниях от поверхности раздела, превышающих радиус этой сферы, равны нулю. Эти силы, являющиеся следствием ненасыщенности межмолекулярных сил на поверхности фаз и зависящие от природы когезионных сил в фазах, всегда выступают как силы притяжения. Ненасыщен-ность межмолекулярного взаимодействия на внешней поверхности частицы приводит к образованию избыточной поверхностной энергии между фазами. Наличие определенного избытка свободной энергии, сосредоточенной в поверхностньге слоях на границе раздела фаз и пропорциональной этой поверхности, обусловливает стремление любых дисперсных систем занять минимальную поверхность раздела фаз. Следствием такого свойства дисперсных систем является стремление в изотермических условиях жидких частиц к коалесценции и твердых частиц к агрегированию, сопровождающихся понижением свободной поверхностной энергии пропорционально убыли поверхности. Термодинамически поверхностную энергию можно характеризовать через уравнение для внутренней энергии и=Р+Тз. Применительно к процессу образования новой поверхности и есть поверхностная энергия, Р - свободная энергия образования поверхности и Тз - тепловой эффект процесса, где 8 = с1Р МТ - температурный коэффициент свободной энергии образования поверхности. Известно, что внутренняя энергия системы является результатом взаимодействия частиц и их кинетической энергии. В изотермических процессах определяемая температурой кинетическая энергия частиц остается постоянной, поэтому все изменения внутренней [c.93]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    В основе практически всех приближенных вариантов метода псевдопотенциала для молекул с несколькими валентными электронами лежит простая и естественная модель. Все электроны молекулы делятся на внутренние (остовные) и внеишие (валентные). Ядро каждого атома и относящиеся к нему внутренние электроны образуют атомный остов. Молекуле сопоставляют модель - взаимодействующие между собой валентные электроны движутся в поле атомных остовов. Чтобы этой моделью можно было пользоваться, для каждой конкретной молекулы надо задать оператор энергии взаимодействия валентного электрона с атомным остовом (т.е. псевдопотенциал атомного остова) и оператор энергии взаимодействия валентных электронов Между собой. Если сможем задать эти взаимодействия, то получим модель, обладающую несомненными достоинствами. В этой модели для однотипных молекул,, различающихся только атомами, стоящими в одном и тот же столбце системы Менделеева, оператор Гамильтона будет иметь одну и ту же структуру, и число электронов будет одним и тем же. Поэтому, например расчет молекулы, содержащей атом иода, будет не сложнее расчета такой же молекулы, но содержащей атом фтора хотя в первой из этих молекул на 44 электрона больще, чем во второй, все эти 44 электрона относятся к остову. Более того, поскольку модели таких молекул различаются только псевдопотенциалами атомных остовов, то изменение свойств при переходе от одной молекулы к другой можно связать с изменением характеристик псевдопотенциалов при переходе от одного атома к другому. В этом случае свойства молекул находят свое объяснение через свойства атомов, но не непосредственно, а через характеристики псевдопотенциалов атомных остовов. [c.292]

    Интересующие нас квантовые системы, как мы видели, обладают свойством изменять частоту излучения, вообще трансформировать энергию. Их внутренняя энергия складывается из электронной и вибрационной (тепловой) энергии, причем запас ее может пополняться или уменьщаться при взаимодействии, с излучением и с соприкасающимися веществами — другими квантовыми системами. Изменение уровня электронной энергии сопровождается изменением уровня вибрационной энергии и, наоборот, увеличение или уменьшение запаса последней влечет за собой соответствующее изменение электронной энергии. Дело в том, что упругие силы, действующие между атомами, зависят от энергетического состояния электронов в то же время шругие колебания атомов деформируют электронные оболочки, т. е. изменяют уровень энергии электронов. Другими словами, в твердом веществе существует электронно-фононное взаимодействие, причем передача и трансформация энергии происходят путем столкновения электронов с фононами. Представляя собой систему большого числа взаимосвязанных вибраторов, твердое вещество имеет сплошные спектры поглощения. Благодаря этому соударение с твердым телом возбужденных молекул или комплексов, в частности продуктов экзотермических реакций, позволяет им освобождаться от избыточной энергии, прежде чем наступает их диссоциация. Твердое тело может вместе с тем легко передавать из своих запасов дополнительную энергию адсорбированным молекулам или атомам и таким путем активировать их, что при определенных условиях позволяет ему служить катализатором химических реакций. [c.132]

    В случаях систем жидкость — газ (пар) можно пренебречь взаимодействием между поверхностными молекулами жидкости, и молекулами газа вследствие разреженности газовой фазы. Таким образом, поверхностное натяжение в системе жидкость — газ (Ж—Г) целиком определяется притяжением поверхностного слоя со стороны жидкой фазы, т. е. внутренним давлением жидкости. Если заменить газовую фазу второй жидкостью, не смешивающейся с первой, то притяжение со стороны второй жидкой фазы приведет к уменьшению некомпенсированности молекулярных сил в поверхностном слое и, следовательно, к уменьшению свободной поверхностной энергии. В результате межфазное натяжение 012 на границе раздела двух абсолютно несмешивающихся жидкостей будет равно разности поверхностных натяжений о°1 и чистых жидкостей на границе с собственным паром  [c.25]

    Примем за исходное состояние системы такое состояние, которое на рис. 17.10 обозначено точкой //. В этом состоянии значение велико, т, е. имеем молекулы А—В, не взаимодействующие с атомом С. При приближении атома С к молекуле А—В преодолеваются силы отталкивания между одноименно заряженными ядрами атомов В и С. Внутренняя энергия системы при этом возрастает. Точка, характеризующая состояние системы, будет двигаться по линии минимальных энергетических градиентов, изображенной на рис. 17.10 пунктиром. Когда расстояние Лд в велико, то имеем молекулу В—С и атом А (точка К). Точка К соответствует конечному состоянию, также характеризующемуся минимальной энергией. В интервале между точками Н и К система находится на перевале, разъединяющем начальное и конечное состояния. [c.289]


Смотреть страницы где упоминается термин Внутренняя энергия взаимодействие между системам: [c.161]    [c.31]    [c.241]    [c.291]    [c.171]    [c.143]    [c.163]   
Термодинамика многокомпонентных систем (1969) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия в системе

Взаимодействующие системы

Система внутренняя энергия

Энергия взаимодействия

Энергия внутренняя



© 2025 chem21.info Реклама на сайте