Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловой баланс и схема охлаждения

    При существующей тенденции расширения производственных мощностей действующих предприятий возникают серьезные трудности в обеспечении их охлаждающей водой, особенно в засушливых районах с напряженным водным балансом. В связи с этим приобретают важное народнохозяйственное значение вопросы исследования новых способов и схем охлаждения, обеспечивающих эффективный отвод в окружающую среду тепла технологических процессов. [c.8]


    Энергетический баланс процесса с рядом противоточно работающих ступеней и внешним охлаждением рабочего тела низкокипящей жидкостью для последующего ожижительного цикла можно составить, исходя из схем, представленных на рис. 2.5 и 2.6. Низкокипящую жидкость (см. разд. 4.4.1) получают в отдельном цикле. В каждой ступени ожижительного цикла имеются прямой и обратный потоки рабочего тела. При прямом потоке рабочее тело поступает (рис. 2.5), например, на первую ступень в точке 2 (Т , Р , а) для изобарного охлаждения обратным потоком рабочего тела и за счет испарения низкокипящей жидкости сначала до и далее до Т . Соответственно изменяется энтропия от до 5з и 8 . На рис. 2.5 и 2.6 представлена только паровая область диаграммы, т. е. на данной ступени при введении исходного вещества с массой N1 коэффициент ожижения и = 0. Ожижение наступит далее, уже на другой ступени — заключительном этапе охлаждения. Обратный поток массы рабочего тела составит N1 (1 — к) или (1 — к), если Л/ = 1. На последующей, второй, ступени прямой поток вещества охладится еще на некоторую величину Д7, а обратный поток при этом нагреется до температуры Т ,, т. е. разность температур уходящего (прямого) и входящего (обратного) потока составит АТ ,. Аналогично на теплом (верхнем) конце системы возникает разность температур вследствие неполноты рекуперации теплоты. Энтальпию вводимой на испарение массы N0 низкокипящей жидкости обозначим уходящего пара этой жидкости — (7. Для компенсации потерь теплоты на необратимость в системе с рабочим телом вводится некоторое количество теплоты N 01. Итак, на ступень с различными теплоносителями вводят (приход) четыре потока теплоносителей с разными энтальпиями, а отводят (расход) три потока  [c.59]

    Существо задачи становится более наглядным, если перечислить все параметры, которые обычно бывают заданы для данного конкретного случая, величины, которые непосредственно определяются этими параметрами, и величины, которые должны быть определены из соотношений теплообмена и движения жидкости. Обычно теплообменник проектируют для нагревания или охлаждения теплоносителя основной системы, для которой массовый расход, допустимые потери напора, входная и выходная температуры заданы. Входная температура теплоносителя во вторичной системе тоже бывает обычно определена. Выходная температура теплоносителя в этой системе является величиной переменной, но опыт подсказывает, что нужное ее значение лежит в сравнительно узком интервале. Поэтому среднелогарифмическая разность температур будет зависеть только от схемы движения потока, а массовый расход вторичного теплоносителя можно определить на основании рассмотрения баланса тепла. [c.172]


    В соответствии с заданием необходимо было провести оптимизацию режима работы абсорбционных холодильных машин, вырабатывающих холод для конденсации целевого продукта, а также изучить возможность использования тепла конденсата и, горячей воды, возвращаемых предприятием на ТЭЦ, для получения холода —5 или —10 °С и определить режимы, обеспечивающие максимальную холодопроизводительность. Основным отличием действующих холодильных агрегатов от базового с точки зрения направления тепловых и материальных потоков является последовательная подача охлаждающей воды через конденсатор и дефлегматор (в базовой схеме охлаждающая вода во все аппараты подается параллельно). Соответственно были внесены изменения в расчетную блок-схему. Схема дополнена блоками, реализующими равенства вд =/вк и Овд =дж (где /вд и /ж—температуры воды на входе в дефлегматор и на выходе из конденсатора, определяемые итеративно в соответствии с тепловым балансом и условиями теплопередачи Овд, — количество воды, поступающее в дефлегматор и потребной для охлаждения конденсатора). Кроме того, уточнены размеры аппаратов и в массив размеров внесены все изменения, которые могут повлиять на результаты работы моделирующей программы. [c.216]

    Рациональная схема теплообмена предусматривает максимальное использование тепла горячих потоков для нагрева сырья и одновременно охлаждения выводимых с установки продуктов. Это позволяет повысить степень регенерации тепла и сократить расход топлива в печи. Принцип расчета теплообменников состоит в решении системы двух уравнений — уравнения теплового баланса и уравнения теплопередачи. [c.318]

    Повышению эффективности способствует также применение в качестве конденсаторов аппаратов воздуш-ногю охлаждения и глубокая утилизация тепла отходящих потоков. Принципиальная технологическая схема установки замедленного коксования 21-10/6 показана на рис. 19. В табл. 9 приведены материальные балансы [c.65]

    Использование в новой тепловой схеме переточной системы, состоящей из нескольких коллекторов, подающих горячий воздух с разной температурой из разных частей зоны охлаждения, позволяет сократить количество горелок и оставить их только в зоне обжига с максимальньтми температурами над слоем. При этом сокращается протяженность отапливаемой части горна вследствие подачи высокотемпературного воздуха и увеличивается количество переточного воздуха, что в конечном счете обусловит снижение расхода топлива. Кроме того, использование при нагреве только горячего воздуха повышает кислородный потенциал теплоносителя и интенсифицирует экзотермическую реакцию окисления магнетита, являющуюся при обжиге окатышей из магнетитовых концентратов источником тепла в слое. При обжиге окатышей из гема-титового концентрата отсутствие в балансе тепла окисления магнетита компенсируется введением в шихТу твердого топлива. В этом случае возрастание кислородного потенциала теплоносителя при нагреве интенсифицирует теплообмен в слое окатышей и повышает эффективность использования дополнительного источника тепла. [c.238]

    Однако анализ возможности достаточно глубокой утилизации тепла отходящих газов и обожженной руды (что необходимо для обеспечения низкого удельного расхода топлива) показывает, что, с одной стороны, рост водяного числа отходящих газов в случае ввода рециркуляционных газов даже в относительно небольшом количестве приводит к замыканию баланса на более высоком температурном уровне (ввиду низкой влажности исходной руды), дополнительным потерям тепла с отходящими и рециркулирующими газами и, как следствие, росту удельного расхода топлива. С другой стороны, использование тепла обожженной руды для подогрева исходной руды еще больше повышает температуру замыкания баланса и сводит почти на нет эффект от охлаждения руды. Использование же тепла обожженной руды для подогрева воздуха, идущего на горение, приводит к резкому повышению температуры продуктов неполного сгорания, на охлаждение которых требуются рециркуляционные газы уже в количестве до 0,7 1, а это в свою очередь приводит к росту температуры уходящих газов и росту удельного расхода топлива, что требует сжигания с более высоким коэффициентом расхода воздуха, дополнительного расхода рециркуляционных газов и т. д. Расчеты показывают, что минимальный расход топлива при работе печи по такой схеме составляет уже 3,7—4% для пятизонной печи при снижении удельной производительности на единицу площади решетки в 1,5—2,0 раза по сравнению с работой на минимальном удельном расходе топлива без газов рециркуляции. [c.400]


Смотреть страницы где упоминается термин Тепловой баланс и схема охлаждения: [c.91]   
Смотреть главы в:

Технология серной кислоты -> Тепловой баланс и схема охлаждения

Производство серной кислоты -> Тепловой баланс и схема охлаждения




ПОИСК





Смотрите так же термины и статьи:

Баланс тепловой



© 2025 chem21.info Реклама на сайте