Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости низкокипящие, испарение

    Испарение низкокипящих жидкостей. Для производства холода широко используется испарение различных жидкостей, обладающих низкими, обычно отрицательными, температурами кипения. При испарении такие жидкости охлаждаются за счет уменьшения энтальпии до температуры кипения при давлении испарения. Так, например, если жидкий аммиак испаряется при давлении 1 ат, то его температура снижается до—34 С — температуры кипения аммиака при данном давлении. При этом аммиак можно применять для охлаждения разных сред до температур, равных приблизительно —30 °С. В случае испарения аммиака при повышенных давлениях его температура кипения повышается и он может быть использован для охлаждения до менее низких температур. [c.650]


    До сих пор в лаборатории наиболее распространен метод очистки жидкостей простой перегонкой, проводимой в колбах Вюрца. Суть процесса заключается в постепенном испарении жидкости с непрерывным отводом и конденсацией образующихся паров. Ход простой перегонки бинарной системы можно проследить на диаграмме равновесий жидкость — пар (рис. V. 14). Если исходить из жидкости состава то первая порция образовавшегося пара будет иметь состав x K Будучи сконденсированным нацело, этот пар превратится в жидкость того же состава [точка на оси абсцисс], которая затем удаляется из системы. В результате конденсации и удаления из системы какого-то количества дистиллята содержание легколетучего компонента в жидкости уменьшится, и она будет иметь теперь состав х - , а равновесный с ней пар — состав х . Точки составов дистиллята, собранного во время испарения жидкости, которое вызывает изменение ее состава от х до расположатся между точками и С помощью такого постепенного испарения раствора и удаления дистиллята можно достичь смещения точки состава жидкости практически к началу координат, т. е. добиться получения в колбе почти чистого труднолетучего компонента, освобожденного от низкокипящих примесей. [c.279]

    В абсорбционных холодильных машинах рабочим телом служит раствор, состоящий из двух (или более) компонентов с разными температурами кипения при одинаковом давлении. Низкокипящий компонент (холодильный агент) испаряется в испарителе, отнимая теплоту от охлаждаемого тела. Пар холодильного агента поглощается вы-сококипящим компонентом (поглотителем) в абсорбере, откуда раствор перекачивается насосом в кипятильник, где при нагревании за счет внешнего источника теплоты холодильный агент испаряется, а оставшийся раствор возвращается в абсорбер. Испаренный холодильный агент конденсируется при охлаждении водой в конденсаторе и возвращается в испаритель. В промышленных условиях для абсорбционной установки могут быть применены первичные энергетические ресурсы (ПЭР) высокотемпературные пар и газы, электрическая и солнечная энергия, а также вторичные энергетические ресурсы или сокращенно ВЭР (см. разд. 3.1) — бросовая теплота пара, горячей воды, реакторных газов, циркулирующих жидкостей и т. д. [c.50]

    Процесс ректификации предназначен для разделения жидких неоднородных смесей на практически чистые компоненты или фракции, которые различаются по температуре кипения. Физическая сущность ректификации, протекающей в процессе перегонки нефти, заключается в двухстороннем массо- и теплообмене между потоками пара и жидкости при высокой турбулизации контактирующих фаз. В результате массообмена отделяющиеся от горячей жидкости пары обогащаются низкокипящими, а жидкость — высококипящими компонентами. При определенном числе контактов между парами и жидкостью можно получить пары, состоящие в основном из низкокипящих, и жидкость — из высококипящих компонентов. Ректификация, как и всякий диффузионный процесс, осуществляется в противотоке пара и жидкости. При ректификации паров жидкое орошение создается путем конденсации части парового потока вверху колонны, а паровое орошение при ректификации жидкости — путем испарения части ее внизу колонны. [c.49]


    Ректификация является распространенным методом разделения и очистки смесей различных продуктов. Если дистилляция основана на процессах испарения и конденсации, то при ректификации, за счет противоточного взаимодействия жидкости и пара,, происходит массо- и теплообмен между ними. Сущность ректификации заключается в многократном обмене компонентами между жидкой и паровой фазами. На каждом элементарном участке поверхности насадки в ректифицирующей части колонки происходит смешение пара с жидкостью. Низкокипящая часть жидкости испаряется, пары наиболее высококипящей части жидкости конденсируются. Таким образом, в результате ректификации в головке колонки собирается легкокипящий компонент, а в кубе — наиболее высококипящий. Разделение смеси будет тем более полным, чем больше поверхность соприкосновения пара с жидкостью. С помощью ректификации можно разделять компоненты близкими температурами кипения (с разницей до 0,5 °С). Эффективность разделения зависит в основном от конструкции колонки, типа насадки и рабочих параметров прибора. [c.219]

    Чем ниже температура кипения жидкостей, тем меньше их теплота парообразования. Даже небольшое количество подводимого тепла вызывает испарение большого количества низкокипящих сжиженных газов. С понижением температуры кипения и возрастанием удельной поверхности изолируемого объекта потери жидкости от испарения резко увеличиваются при неизменной величине теплового потока. Так, вследствие малой теплоты парообразования жидкий водород испаряется в 7,7 раза быстрее, чем жидкий кислород, при одинаковом подводе тепла [30]. [c.39]

    Рассмотрим процесс однократного испарения бинарной смеси с помощью изобарных кривых (рис. 111). Допустим, что имеется жидкость с копцептрацией низкокипящего компонента ири температуре Q. Это состояние характеризуется точь ой Ад. [c.196]

    Пусть количество исходного сырья g , вес образовавшихся при однократном испарении паров ( очевидно, количество оставшейся жидкости в этом случае gg — G. Обозначим массовое содер<кание низкокипящего компонента в исходном сырье х , содержание его в парах г/ и в жидкости х. [c.197]

    При осуществлении- процессов однократного испарения или однократной конденсации можно получить пар более богатый низкокипящим компонентом (НКК), а жидкость более богатую высококипящим компонентом (ВКК), чем исходная смесь. Однако достаточно хорошая степень разделения компонентов не достигается. В случае многократных или постепенных процессов испарения и конденсации можно получить желаемые составы паровой и жидкой фаз, но масса получаемых продуктов незначительна по сравнению с массой исходной смеси. [c.254]

    Очевидно, обратные явления имеют место в процессах конденсации, сопровождающихся понижением температуры и прогрессивным обогащением остаточного пара компонентом, играющим роль низкокипящего. При этом важно отметить, что для рассматриваемого класса однородных в жидкой фазе азеотропов путем постепенной или многократной конденсации можно добиться получения практически чистых компонентов системы, если ее исходный состав а отличен от азеотропического. В ходе же испарения конечным продуктом является азеотропическая смесь которая теоретически может быть получена лишь с последней кап-лей перегоняемой жидкости. [c.66]

    Пробу нефти или нефтепродукта, отобранную для анализа, переносят в цилиндр для измерений очень осторожно, не допуская взбалтывания, чтобы избежать образования пузырьков воздуха и уменьшить до минимума испарения низкокипящих составляющих. Высоколетучие образцы всегда переносят в цилиндр с помощью сифона. При погружении ареометра в цилиндр необходимо следить, чтобы оставшаяся над поверхностью жидкости часть стержня ареометра оставалась сухой, так как излишняя жидкость влияет на точность отсчета. Правильной точкой отсчета плотности жидкости является точка на шкале ареометра, в которой поверхность жидкости пересекает шкалу ареометра. Если для измерений плотности ареометром используется пластмассовый цилиндр, то необходимо снять с него статический электрический заряд, мешающий свободному плаванию ареометра. [c.244]

    Ректификацией называют процесс разделения смеси жидкостей, состоящей из двух или более компонентов. Жидкости, входящие в смеси, имеют различные температуры кипения. При испарении более летучий низкокипящий компонент переходит в пары, а высококипя-щий остается в жидкости. [c.105]

    Чтобы более полно отделить низкокипящий компонент, в колоннах этих групп можно проводить многократную перегонку путем циркуляции разделяемой смеси. Отметим также, что в данных дистилляторах испарение происходит только с поверхности пленки жидкости и молекулы селективно покидают эту поверхность без какого-либо механического воздействия [147]. [c.283]


    Процессы адиабатические. Это тоже не правильно, так как тепло будет проникать из окружающей среды. Однако процесс мгновенного испарения протекает очень быстро, и, следовательно, притоком тепла от окружающей среды скорее всего можно пренебречь. Намного существеннее здесь степень влияния пены и брызг на количество жидкости, выброшенной в окружающую среду. Эти вопросы будут обсуждаться чуть ниже. Как и в случаи с криогенными жидкостями, можно ожидать дифференцированного испарения более низкокипящих компонентов смеси, что является основой "однократной равновесной перегонки".  [c.79]

    На основании изложенного выше можно сделать вывод, что упругость паров вещества характеризует способность этого вещества к испарению и кипению. Чем выше упругость паров и чем легче она повышается с температурой, тем легче испаряется жидкость, тем при более низкой температуре она закипает. Такие жидкости носят название летучих и низкокипящих. Наоборот жидкости с малой упругостью паров и высокими телшературами кипения называются малолетучими и высококипящими. Из графика (рис. 36) видно, что бутан оолее летуч, нежели бензол, а последний более летуч, чем толуол. [c.83]

    Испарение низкокипящих жидкостей. Так, например, если испарять жидкий аммиак при абсолютном давлении 2 ат, то он охлаждается до температуры кипения при этом давлении (около —20° С) и может служить охлаждающим агентом для получения температур порядка —15° С. С понижением давления испарения достигаются еще более низкие температуры. [c.523]

    Вместе с тем теплоты парообразования различных жидкостей тем меньше, чем ниже их температуры кипения. Поэтому небольшой теплоподвод вызывает испарение значительного количества жидкого водорода, являющегося одной из наиболее низкокипящих жидкостей. Вследствие малой теплоты парообразования объем жидкого водорода уменьшается в 7,7 раза быстрее, чем объем жидкого кислорода, при одинаковом подводе [c.103]

    Ректификация. При однократном испарении взаимно растворимых жидкостей и последующей конденсации паров получают две фракции легкую, в которой содержится больше низкокипящих фракций, и тяжелую, в которой содержится меньше низкокипящих фракций, чем в исходном сырье. Следовательно, при перегонке происходит обогащение одной фазы низкокипящими, а другой — высококипящими компонентами. Однако достичь требуемого разделения компонентов нефти и получить конечные продукты, кипящие в заданных температурных интервалах, с помощью перегонки нельзя. Поэтому после однократного испарения нефтяные пары подвергаются ректификации. [c.121]

    В ЭТОЙ с.хеме, использующей однократное испарение смолы, все фракции, кроме легкого масла, отводятся в виде боковых отборов в жидкой фазе. Для испарения орошающей жидкости используется тепло конденсации этих фракций. Ректификационный агрегат представляет собой колонну, состоящую из неполных ректификационных колонн, лишенных исчерпывающих секций. Поэтому во всех боковых фракциях содержатся равновесные количества низкокипящих компонентов. В отличие от аналогичных схем ректификации нефти отсутствуют и отпарные колонны, что затрудняет управление качеством отбираемых фракций. При одно- [c.162]

    В процессах искусственного охлаждения снижение температуры холодильного агента, играющего роль переносчика тепла, производится с помощью 1) испарения низкокипящих жидкостей и 2) расширения различных предварительно сжатых газов. [c.650]

    При ректификации происходит многократное испарение жидкости и конденсации паров, движущихся противотоком, в результате чего осуществляется непрерывный мас-со- и теплообмен между ними. При этом на нижней ступени из жидкой смеси извлекается низкокипящий компонент, который переходит на верхнюю ступень, а высококипя-щий компонент переходит из паровой фазы в жидкую. В результате после конденсирования паров смесь разделяется на дистиллят и остаток (рис.10.6). [c.115]

    Низкокипящие жидкости при.меняются для отв ода теплоты пр И их испарен и и. Ам.миак имеет температуру кипения —33° С и Несмотря Н З то, что ядовит, широко применяется в качестве хладагента. Температура кипения этз на и этилена —88° С И —103° С кроме них, широко применяются пропан, пр опил ен, пентан и т. д. [c.249]

    Другой принцип достижения очень низких температур и интенсивного охлаждения основан на испарении низкокипящих жидкостей за счет тепла окружающей среды. Так, ири помощи жидкого воздуха или жидкого азота можно достичь охлаждения до —180 " С. [c.17]

    Энергетический баланс процесса с рядом противоточно работающих ступеней и внешним охлаждением рабочего тела низкокипящей жидкостью для последующего ожижительного цикла можно составить, исходя из схем, представленных на рис. 2.5 и 2.6. Низкокипящую жидкость (см. разд. 4.4.1) получают в отдельном цикле. В каждой ступени ожижительного цикла имеются прямой и обратный потоки рабочего тела. При прямом потоке рабочее тело поступает (рис. 2.5), например, на первую ступень в точке 2 (Т , Р , а) для изобарного охлаждения обратным потоком рабочего тела и за счет испарения низкокипящей жидкости сначала до и далее до Т . Соответственно изменяется энтропия от до 5з и 8 . На рис. 2.5 и 2.6 представлена только паровая область диаграммы, т. е. на данной ступени при введении исходного вещества с массой N1 коэффициент ожижения и = 0. Ожижение наступит далее, уже на другой ступени — заключительном этапе охлаждения. Обратный поток массы рабочего тела составит N1 (1 — к) или (1 — к), если Л/ = 1. На последующей, второй, ступени прямой поток вещества охладится еще на некоторую величину Д7, а обратный поток при этом нагреется до температуры Т ,, т. е. разность температур уходящего (прямого) и входящего (обратного) потока составит АТ ,. Аналогично на теплом (верхнем) конце системы возникает разность температур вследствие неполноты рекуперации теплоты. Энтальпию вводимой на испарение массы N0 низкокипящей жидкости обозначим уходящего пара этой жидкости — (7. Для компенсации потерь теплоты на необратимость в системе с рабочим телом вводится некоторое количество теплоты N 01. Итак, на ступень с различными теплоносителями вводят (приход) четыре потока теплоносителей с разными энтальпиями, а отводят (расход) три потока  [c.59]

    Таки.м образом, при многократном испарении процент отгона меньше, чем в случае однократного исиарения, при одной и той /ке конечной температуре. Но выделение низкокипящего компонента из остатка является более полным, и в пределе последняя капля жидкости будет состоять из одного высококипящего компоиепта. Поскольку одни и тот же отгон наступает в случае однократ1[ого испарения при более низкой температуре, выкипание низкокипящего компонента будет менее полным, чем в случае многократного испарепия. [c.199]

    Водяной пар, подаваемый в низ колонн, поднимается вверх вм( сте с парами, образующимися при испарении жидкости (кубового остатка или бокового погона), вступая на вышерасположенной тарелке в контакт со стекающей жидкостью. В результате тепло— и мае сообмена в жидкости, стекающей с тарелки на тарелку, концен — трация низкокипящего компонента убывает в направлении сверху вниз. В этом же направлении убывает и температура на тарелках вследствие испарения части жидкости. Причем, чем большее коли — чесгво подается водяного пара и ниже его параметры (температура и давление), тем до более низкой температуры охладится кубовая жидкость. Таким образом, эффект ректификации и испаряющееся действие водяного пара будут снижаться на каждой последующей тарелке. Следовател1эНо, увеличивать количество отпарных тарелок и расход водяного пара целесообразно до определенных пределов. Наибольший эффект испаряющего влияния перегретого водяного пара проявляется при его расходе, равном 1,5 —2,0 % масс, на исходное сырье. Общий расход водяного пара в атмосферные колонны установок перегонки нефти составляет 1,2 —3,5, а в вакуумные колонны для перегонки мазута — 5 —8 % масс, на перегоня — ем( е сырье. [c.173]

    В двухфазных парожидких системах, обладающих, согласно правилу фаз. двумя степенями свободы, испарение однородной жидкой фазы сопровождается преимущественным выкипанием одного из компонентов, играющего роль низкокипящего и вследствие этого темперагура системы прогрессивно в ходе перегонки возрастает до точки кипения второго компонента, играющего роль высококипящего, согласно изобарным кривым кипения и конденсации. Поэтому при раздельно ,I испарении слоя А, для которого компонент да играет роль низкокипящего, температура жидкой фазы растет в ходе перегонки, а жидкость обогащается компонентом а до тех пор-лока не будет достиг, нута его точка кипения. Этот процесс характеризуется кривой кипения АС и кривой конденсации СЕ, сходящимися в одной точке С, отвечающей чистому компоненту а и его точке кипения 4. [c.27]

    Процессы ректификации проводят в аппаратах колонного типа, где снизу вверх поднимаются пары смеси, испаряемой в нижней части колонны, называемой кубом. Навстречу пару стекает жидкость. При взаимодействии пара с жидкостью происходит миого-кратчая конденсация паров и испарение жидкости, в результате иары непрерывно обогащаются низкокипящим компонентом, а жид- [c.105]

    Подогретую исходную смесь непрерывно с определенной скоростью впрыскивают в вакуумированную колбу 8. При этом жидкость распределяется по стенкам колбы в виде тонкой пленки. В результате дополнительного разрежения при впрыскивании низкокипящая фракция сразу же испаряется. Пленка, образованная на нагретых стенках колбы, имеет большую поверхность испарения, поэтому в течение небольшого периода времени испа- [c.269]

    Хикман [152] и Эмбре [154] ввели для молекулярной дистилляции понятие дистилляционная способность , под которой понимают отношение числа молекул вещества, покидающих в единицу времени поверхность испарения, к числу молекул того же вещества, остающихся при данных условиях в пленке жидкости. Многократной циклической перегонкой можно полностью получить вещество в виде дистиллята. При этом продолжительность времени дистилляции удается сократить путем повышения температуры испарения. Кривую выделения находят следующим образом. Смесь перегоняют при стабилизированном вакууме и постоянной скорости повышения температуры (например, последовательно повышая температуру на 10 °С) и определяют концентрацию низкокипящего компонента в дистилляте. Типичные кривые выделения показаны на рис. 214. Как видно из рисунка, концентрация вначале растет до максимума, а затем снижается [c.290]

    Для разделения смеси жидкостей обычно прибегают к перегонке. Разделение путем перегонки основано на различной температуре кипения отдельных веществ, входящих в состав смеси. Так, если смесь состоит из двух компонентов, то при испарении компонент с более низкой температурой кипения низкокипящий компонент, сокращенно НК) переходит в пары, а компонент с более высокой температурой кипения высококипящий компонент, сокращенно ВК) остается в жидком состоянии. Полученные пары конденсируются, образуя так называемый дистиллят неиспаренная жидкость называется остатком. Таким образом, в результате перегонки НК переходит в дистиллят, а ВК — в остаток. [c.657]

    Таким образом, в результате теплообмена между паровой фазой и жидкостью на каждой тарелке происходят непрерывное частичное испарение жидкости и частичная конденсация паров, что обес нечивает определенное изменение концентрации компонентов в жидкой и паровой фазах. Пары движутся снизу вверх, и ио ходу их иа каждой последующей тарелке в них увеличивается концентрация низкокипящих фракций и уменьшается концентрация высококипящих. Жидкость же при движении сверху вниз на каж- [c.127]

    Если жидкость, состоящую из двух взаимно растворимых компонентов, кипятить при постоянном давлении, то образующийся пар будет обогащаться легколетучим (низкокипящим) компонентом (НК). После конденсации паров получается жидкость (дистиллят), в которой больше легколетучего компонента. В остатке (жидкости), соответственно, возрастает концентрация менее летучего (высококипящего) компонента (ВК), В связи с этим температура конденсации паров всегда будет ниже температуры кипения исходной жидкости. Испарение жидкости можно проводить однократно, В зтом случае в результате длительного соприкосновения кипящей жидкости и пара происходит частичное разделение коипонентов.Такой процесс однократного испарения используется в промышлености и применяется, например, при сепарации нефти на промыслах. [c.4]

    Для охлаждения до значительно более низких температур, чем О "С, применяют холодильные агенты, представл5иош,ие собой нары низкокипящих жидкостей (например, аммиака), сжиженные газы (СО,, этан и др.) или холодильные рассолы. Эти агенты нспользу[от в специальных холодильных установках, где при их испарении тепло отнимается от охлаждаемой среды, после чего пары сжижаются путем компрессии или абсорбируются и цикл замыкается. Описание холодильных установок приведено в главе XVII. [c.325]

    При К = 3-1 имеем, что количество высококипящего компонента в смеси паров, вводимых в 3-1 -ую ступень конденсащга, равно количеству низкокипящего компонента в смеси жидкостей, вводимых в Зую ступень испарения. Следовательно, в соответствии с (З.Й4), количество сконденсированных паров в 3-1 - ой ступени равно количеству испаренной жидкости в 3- ой ступени [c.65]

    Ректификационные колонны. При проведении процесса однократного испарения получают пар, обогащенный низкокипящим компонентом, и жидкость, обогащенную высококипящим компонентом по сравнению с исходным сырьём. Однако четкое разделение в однократных процессах не достигается. Для получения продуктов с любой желаемой концентрацией компонентов и высокими выходами служит процесс ректификации (см. раздел I). При многократном контактировании неравновесных паровой и жидкой фаз и их массо- и теплообмене паровая фаза обогащается низкокипящим компонентом (НКК), а жидкость — высо-кокипяшим компонентом (ВКК). [c.67]

    В литературе описано много конструкций таких приборов. Схема одного из них приведена на рис. 9. Пар, образующийся при кипении в емкости (кубе) А, поднимается во внутренней трубке 5 и конденсируется в холодильнике Сл, конденсат стекает в приемник В, откуда его избыток поступает в куб Л. Температура стенок трубки с помощью внешнего нагревателя 7 поддерживается при температуре кипения жидкости во избежание частичной конденсации пара на стенках трубки и связанного с этим дополнительного разделения компонентов смеси. В течение опыта нижний конец трубки 5 остается частично погруженным в кипящую жидкость, в результате чего пар из паровой рубашки не попадает в холодильник С , а поступает в холодиль-1ШК Сп, где конденсируется конденсат поступает в куб А. Таким образом, в приборе имеет место циркуляция жидкости, отсюда и лазвание метода. Через некоторое время собранный в приемнике дистиллят практически будет иметь состав, отвечающий составу пара, равновесного с жидкостью в кубе А. На основании результатов анализа проб жидкости из приемника В и куба А по уравнению (11.4) или (П.5) нетрудно найти а. Циркуляционный метод дает хорошие результаты, когда величина а исследуемой системы не очень велика. Отмеченное ограничение обусловлено тем, что в процессе циркуляции парожидкостной смеси сосуществующие фазы не находятся в термодинамическом равновесии. При этом особенно заметно составы фаз отличаются от равновесных в системе с большими значениями а вследствие повышенного испарения низкокипящего компонента. Поэтому для определения коэффициента разделения в таких системах целесообразно использовать метод статического уравновешивания фаз. Циркуляционный метод приводит к неточным результатам и тогда, когда коэффициент разделения мало отличается от единицы, поскольку при этом трудно с удовлетворительной точностью определить различие в составах фаз, даже если в распоряжении имеется достаточно чувствительный метод анализа. В этом случае лучше воспользоваться методом релеевской дистилляции. [c.45]

    Практически поступают так нагревают нефтяную жидкость до конечной температуры затем вводят жидкость в сосуд (испаритель), в котором вся сумма паров отделяется от жидкости. Здесь высоко- и низкокипящие фракции, превратившись в парообразное состояние, вместе и одновременно покидают неиспарившуюся жидкость — остаток. В промышленном маситтабе такой способ испарения осуществляется в трубчатых печах. [c.36]


Смотреть страницы где упоминается термин Жидкости низкокипящие, испарение: [c.94]    [c.330]    [c.502]    [c.54]    [c.204]    [c.279]    [c.8]    [c.231]    [c.84]   
Основные процессы и аппараты Изд10 (2004) -- [ c.650 , c.661 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.689 , c.701 , c.702 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкости низкокипящие



© 2025 chem21.info Реклама на сайте