Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разупорядоченность чистых металлов

    Разупорядоченность чистых металлов [c.72]

    Химический потенциал атомов в слабо разупорядоченном чистом металле согласно формуле (3.10) равен [c.259]

    Изложенная выше теория описывает строение чистых металлов и интерметаллических соединений при малой степени разупорядоченности, когда отклонения от упорядоченной структуры можно представлять как точечные дефекты. Очевидно, что такое представление весьма ограничено. Оно явно не применимо к твердым растворам с широкой областью гомогенности, в которых концентрации обоих компонентов могут изменяться в пределах до десятков атомных процентов. Кроме того, сплавы, состав которых близок к стехиометрическому и которые при низких температурах рассматриваются как интерметаллические соединения, при достаточно высоких температурах ведут себя как твердые растворы. Это связано с тем, что при высоких температурах атомы различных сортов статистически распределяются по узлам решетки. При этом понятие точечных дефектов теряет смысл, и для таких сильно разупорядоченных систем необходимо специальное описание [41—43]. [c.87]


    При легировании кристалла двухвалентным металлом его электропроводность сильно возрастает (кривая 2). При этом собственная разупорядоченность не достигается и при наиболее высоких температурах участок П имеет наклон, соответствующий энергии активации миграции носителей. В области более низких температур ход кривой 2 повторяет ход кривой 1 для чистого образца, так что участок П1 также связан с ассоциацией дефектов в парные комплексы. Новый изгиб кривой Аррениуса при переходе от участка И1 к IV, скорее всего, связан с [c.187]

    Описание структурной модели. Результаты представленных в 2.1 экспериментальных исследований, а также приведенные в п. 2.2.1 представления о неравновесных границах зерен являются базисом для разработки структурной модели наноструктурных материалов, полученных ИПД [12, 150, 207]. Предметом этой модели является описание дефектной структуры (типов дефектов, их плотности, распределения) атомно-кристаллического строения наноструктурных материалов, а задачей — объяснение необычных структурных особенностей, наблюдаемых экспериментально высоких внутренних напряжений, искажений и дилатаций кристаллической решетки, разупорядочения наноструктурных интерметаллидов, образования пересышенных твердых растворов в сплавах, большой запасенной энергии и других. На этой основе становится возможным объяснение, а также предсказание уникальных свойств наноструктурных материалов (гл. 4 и 5). Вместе с тем, как было показано вьппе, типичные наноструктуры в сплавах, подвергнутых ИПД, весьма сложны. Более простым является пример чистых металлов, где основным элементом наноструктуры выступают неравновесные границы зерен. Структурная модель металлов, подвергнутых ИПД, может быть представлена следую-шим образом. [c.99]

    Таким образом, общая последовательность эволюции структуры в интерметаллидах на основе NiзAl является подобной той, что была установлена для чистых металлов и разупорядоченных сплавов. Однако специфическая особенность этих материалов связана с установлением дальнего порядка уже на ранних стадиях процесса возврата, т. е. при перераспределении и уменьшении количества дислокаций. Было высказано предположение [73], что непосредственная причина переупорядочения связана с подвижными вакансиями, образующимися в результате разрушения различных дефектов и дислокационных петель, присутствовавших в деформированном материале. [c.145]

    Эффекты в металлах с изотопическим беспорядком. И. Я. Померан-чук [142] показал, что пространственные флуктуации атомной массы в изотонически разупорядоченных металлах приводят к конечной величине остаточного электрического сопротивления ро при нулевой температуре. Рассеяние электронов происходит на небольшом возмущающем поле вблизи изотопической примеси. Само возмущение возникает из-за отличия нулевых колебаний данного изотопа от амплитуды колебаний матрицы металла. Это сопротивление Ро, будучи пропорционально 4-й степени параметра электрон-ионного взаимодействия, оказывается очень малым. Насколько известно автору, оно пока не было экспериментально идентифицировано даже в самых химически чистых металлах. Позже выяснилось, что существуют другие механизмы появления электрического сопротивления в изотонически разупорядоченных [c.77]


    Подавление фононной теплопроводности диэлектриков и полупроводников с ростом степени изотопического беспорядка в кристаллической решётке (см. ниже) оказывается одним из самых сильных изотопических эффектов. Однако, как ожидается на основе теоретических представлений, фононная компонента теплопроводности металлов и сплавов слабо зависит от изотопического состава как при изменении атомной массы изотонически чистого металла, так и при изменении степени изотопического разупорядочения в изотопических смесях. Причина этого заключается в том, что в чистых металлах при высоких температурах решёточная теплопроводность ограничена фонон-фононными процессами релаксации, которые слабо зависят от массы изотопа и не зависят от степени изотопического беспорядка. При низких температурах (напомним, что сравнение делается по отношению к температуре Дебая) определяется процессами электрон-фононного рассеяния, скорость которых почти не меняется с изменением изотопического состава. В неупорядоченных сплавах большое количество легирующих примесей и других дефектов решётки вызывает сильное рассеяние фононов, значительно уменьшая решёточную теплопроводность. В результате этого рассеяние фононов на изотопическом беспорядке оказывается малой добавкой к суммарной скорости релаксации фононов и, соответственно, мало изменяет Яф. [c.79]

    Чисто статистическая модель жидкости более подходит для описания структуры жидкостей с одноатомными молекулами (таких, как сжиженные благородные газы или жидкие металлы). Для описания структуры жидкостей с многоатомными молекулам , у которых отсутствует шаровая симметрия, более подходит структурнодиффузионная модель, развитая в работах [6—8]. В соответствии с этой моделью структуру жидкости можно представить как кристаллическую с соответствуюш ей решеткой, но сильно разупорядочен-ную за счет теплового колебательного и трансляционного движения молекул. Разупорядочение решетки будет происходить как за счет [c.29]

    В ряду сульфатов одновалентных металлов изменение энтропии при р—а-превращении по мере увеличения катионов стремится к нулю. Это позволяет выделить (у Сз2В04) практически в чистом виде один из двух компонентов совмещенного перехода, а именно— переход второго рода за счет смещения характеристик перехода первого рода из точки р—алпревращения в точку плавления. Таким вбразом, скачкообразный переход твердых тел в суперионное состояние совмещает превращение двух типов, из которых одно (превращение первого рода) отражает процессы разупорядочения катионной подрешетки, а другое (превращение второго рода) — изменение симметрии анионной подрешетки. Любопытно, что для нестехиометрических кристаллов переходы, связанные с позиционным разупорядочением, смещаются в- точку плавления или в точку полиморфного превращения [149, 150]. [c.150]


Смотреть страницы где упоминается термин Разупорядоченность чистых металлов: [c.273]    [c.439]   
Смотреть главы в:

Физическая химия твердого тела -> Разупорядоченность чистых металлов




ПОИСК







© 2025 chem21.info Реклама на сайте