Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Критерии определяющие диффузионных процессов

    Процессы внешнего массообмена газа с зернами (испарение материала последних или содержащейся в них влаги, адсорбция примесей из потока) должны быть подобны процессам межфазного теплообмена в том же кипящем слое. Поскольку диффузионный критерий Прандтля (критерий Шмидта S = v/D) для газов того же порядка, что и Рг, то зависимость диффузионного критерия Нуссельта (критерия Шервуда Sh = Pd/D) должен определяться аналогичной (П1.12) корреляцией. Малы будут и коэффициенты массообмена Р (м/с). Соотношение между массоемкостью газового потока (концентрацией насыщенного пара) и твердой фазой может быть еще значительно меньше, чем отношение их объемных теплоемкостей, и все описанные выше характерные особенности межфазного теплообмена справедливы и для процессов межфазного массообмена. [c.135]


    Если исходить из обычных представлений химической кинетики, то люжно было бы по температурному коэффициенту судить о том, какая из стадий (кинетическая зди диффузионная) определяет скорость коррозии. Одним из основных критериев, отличающих диффузионный процесс от химического, является температурный коэффициент для процессов, определяемых скоростью химической реакции, он равен 7 ч- 10% на Г, а для процессов, определяемых диффузией,— Р -3% на 1°. [c.224]

    Коэффициенты Вант-Гоффа позволяют судить не только о том, во сколько раз можно ускорить коррозионный процесс, но и получить данные о механизме процесса, так как одним из критериев, отличающих диффузионный процесс от химического, является температурный коэффициент. Для процессов, определяемых скоростью химической реакции, он равен 7—10% на 1°, а для процессов, определяемых диффузией, 1—3% на 1°. По величине этого коэффициента можно, таким образом, определить, какая из реакций в суммарном процессе ускоряется. Коэффициенты, близкие к двум, могут свидетельствовать о том, что коррозионный процесс определяется скоростью протекания самой электрохимической реакции, например реакции восстановления кислорода или водорода. Коэффициенты, равные 1—1,5, указывают на то, что скорость коррозионного процесса определяется диффузией. [c.22]

    Как было выше показано, электрохимическая защита достаточно углубившейся коррозионно-механической трещины в условиях отсутствия диффузионных ограничений электрохимических реакций становится невозможной. Там же были сформулированы количественные критерии такого явления. Покажем теперь, что в условиях, когда скорость электрохимических процессов определяется диффузионной кинетикой, в принципе возможна электрохимическая защита (в смысле поляризации вершины трещины до заданной величины потенциала) и весьма глубоких трещин. [c.208]

    В области потенциалов максимального ингибирования электродного процесса показатель степени д =0,85, что также близко соответствует процессам, кинетика которых определяется скоростью обновления поверхности ртутного электрода. Даже токи при потенциалах отрицательнее —1,0 в при достаточно высокой концентрации соли феррициния не удовлетворяют в полной мере критериям чисто диффузионных токов. Например, при концентрации соли феррициния 2-10 Л1 и =—1,0в х—0,1. [c.201]

    Кинетическая и диффузионная область. Очень важно правильно определить, протекает процесс в диффузионной области или кинетической, т. е. что является определяющей—скорость массопередачи или скорость химической реакции. Основными переменными, позволяющими это обнаружить, служат скорость потока и температура. Уравнение (VI, 2) показывает, что скорость массопередачи почти прямо пропорциональна скорости потока. С другой стороны, такое изменение рабочих условий совершенно не сказывается на скорости химической реакции. Влияние температуры на массопередачу выражено только в изменении физических свойств веществ в критериях подобия. Однако суммарное влияние температуры на скорость массопередачи весьма незначитель- [c.181]


    В качестве критерия оценки преобладающего влияния внешней нли внутренней диффузии на массообмен при адсорбции может служить величина диффузионного критерия Био (см. стр. 306). Так, при В1 30 скорость внешнего массопереноса настолько велика, что скорость процесса в целом определяется скоростью диффузии внутри зерна адсорбента, а при В 0,1 общая скорость процесса лимитируется скоростью внешней диффузии в газовой (жидкой) фазе. [c.571]

    Эти результаты показывают тесную связь между газофазными и гетерогенными процессами окисления метана. Поскольку при достаточно высоких температурах, необходимых даже для каталитической активации метана, трудно рассчитывать на высокоселективные реакции на поверхности, специфическая роль катализа, который в данном случае можно определить как высокотемпературный катализ, состоит главным образом в обеспечении необходимой скорости генерации первичных радикалов, и, по-видимому, именно это должно являться главным критерием при выборе катализатора. Анализ различных диффузионных процессов с участием атомов и свободных радикалов в порах катализаторов показывает, что СНз-радикалы являются единственными активными частицами, выходящими в газовый объем в условиях каталитического окисления метана и инициирующими все [c.306]

    О ячеистая модель переходит в идеальную модель полного смешения, а при оо — модель полного вытеснения. В этом смысле число N является мерой перемешивания в реакторе, и, следовательно, его роль в ячеистой модели аналогична критерию Пекле в диффузионной модели. Очевидно, что адекватность ячеистой модели процессу в реальном реакторе в значительной степени будет определяться выбором величины числа N. [c.82]

    Приложение теории подобия к процессам массопередачи показало, что эти процессы определяются кинематическим критерием Не и диффузионными критериями Ыи и Рг, являющимися аналогами тепловых критериев Ыи и Рг. Значения диффузионных критериев приведены в табл. 23. [c.577]

    Уравнение (4.40) было выведено с учетом уравнения Нернста (4.7), которое применимо, если не нарушено равновесие стадии разряда — ионизации. Поэтому для доказательства диффузионной природы тока важным критерием является вытекающая из уравнения (4.40) линейная зависимость Е от 1п((/й — /)//] с тангенсом угла наклона ЯТ/пЕ. По тангенсу угла наклона можно определить число участвующих в реакции электронов п. Для электродных процессов, скорость которых лимитируется диффузионной стадией, потенциал полуволны не зависит от концентрации электрохимически активного вещества, и получается одна и та же величина Е / анодного и [c.229]

    Как термодинамический, так и кинетический факторы учитываются при решении одной из важнейших задач современной техники — подбора жаропрочных сплавов. Одним из критериев прн выборе рецептур таких сплавов является малая диффузионная подвижность. Это определяется тем, что в процессах разрушения при высоких температурах диффузия играет существенную роль. [c.273]

    Прн адсорбции индивидуальных веществ (в отсутствие газа-носителя) скорость процесса определяется лишь величиной внутри-диффузионного сопротивления. Вследствие этого решения дифференциальных уравнений диффузии могут быть использованы для определения коэффициентов внутренней диффузии. При адсорбции из потока газа-носителя характер изменения концентрации на поверхности зерна, а также скорость адсорбции зависят и от внешнедиффузионного сопротивления, что в конечном счете учитывается наличием в решении критерия Био. [c.178]

    Коэффициенты массообмена в экстракционных колоннах зависят от фнзнко-химических свойств жидкостей, турбулентности в обеих фазах и геометрических элементов колонны. Несмотря на трудности определения поверхности контакта фаз, количественно массообмен определяется для всех типов колонн при помощи объемных коэффициентов массопередачи или высоты единицы массопереноса. Обе аелнчины (коэффициент и высоту единицы переноса) относят к фазе рафината, или к фазе экстракта, или же к диспергированной фазе, или к сплошной. Опытные данные выражаются с помощью критериев подобия, используемых при описании диффузионных процессов критерия Шервуда 5п, критерия Рейнольдса Ре для обеих фаз и критерия Шмидта 5с. В состав этих критериев входят вязкость и плотность жидкости но они не учитывают межфазного натяжения, которое в жидких системах оказывает влияние на массообмен через межфазную турбулентность. Расчетным уравнениям придается зид показательных функций. Введение в уравнения критерия Рей- юльдса для обеих фаз одновременно следует из предполагаемого влияния турбулентности одной фазы на другую. Во многих случаях зто влияние не подтверждается, и тогда уравнение содержит только один критерий Рейнольдса или скорость одной фазы. [c.304]


    Коэффициент Ь определяют из зависимости Ig [i/id — t] — Е (представляющей для обратимых процессов прямую линию) как наклон, равный 2,2>RT/nF, что при 25 °С составляет 59,1//гр,В. Критерием обратимости может также служить разность между потенциалами в точках, для которых ток реакции составляет 1/4 и 3/4 диффузионного тока, равная (RT/nF) lg9, т. е. 5б,3/лр,В [320]. В качестве примеров исследований такого рода можно привести работы [796, 681, 892, 814, 1009, 1266, 164, 751, 988, 1022, 382. 14, 1180]. [c.75]

    Исследованием кинетики реакций окисления нефтяных гудронов занимались многие исследователи. При этом в качестве критерия скорости процессов принималось изменение температуры размягчения битумов [1, 2], или выделение тепла [3], или изменение концентрации групповых компонентов [4, 5, 6]. С использованием кинетических уравнений реакций первого порядка авторами этих работ обычно определялись суммарные константы скорости процессов окисления. Отмечается также довольно своеобразное влияние температуры окисления на величины суммарных констант скорости, которое объясняется изменением удельного значения диффузионных и кинетических факторов [7]. Результаты этих исследований, несомненно, представляют практический интерес для оптимизации процессов и расчета аппаратуры, однако они недостаточны для суждения о механизме реакций, так как не учитывают кинетические особенности отдельных реак- цин и влияние на их скорость условий, в которых проводится -окисление. Вероятно, по этой причине с использованием известных схем лишь в отдельных случаях удается удовлетворительно объяснять особенности окисления сырья, наблюдаемые в экспериментах. [c.42]

    При этом Ь изменяется в пределах от —1 до 2 и оговаривается область размеров, в которой это уравнение применимо. По данным различных исследователей, температура оказывает влияние только на /С . Однако, как следует из рис. 1.5,6, меняется в целом характер зависимости (1)= Ф Я) с изменением значения критерия Шмидта (5с = р,/р/)), то есть с изменением температуры кристаллизуемой системы. На рис. 1.6, а можно проследить переход от чисто диффузионного роста (кривая 3) к случаю, когда процесс лимитируется поверхностной кинетикой (кривая 1). Наблюдаемый на кривой 1 провал , по всей видимости, связан с влиянием на Г1(/) для частиц малых размеров диффузионного потока, который при больших значениях Я перестает лимитировать рост. Результаты расчетов при наличии крупномасштабных турбулентных пульсаций представлены на рис. 1.6,6. Таким образом, в случае наличия крупномасштабных турбулентных пульсаций г](1) может аппроксимироваться зависимостью (1.73 ). При свободном осаждении зависимость Г1(/) от размера Я имеет более сложный вид и в значительной степени определяется соотношением диффузионных и кинетических составляющих процесса. [c.42]

    Из анализа имеющихся теоретических и экспериментальных данных может быть сделана оценка величин показателей степени р и q, исходя из зависимости частных высот единиц переноса от диффузионного критерия Прандтля в виде hy = С Рг ш = Prl или по непосредственным данным о влиянии коэффициентов молекулярной диффузии на коэффициент массоотдачи. Тогда, определив опытным путем значения общих высот единиц переноса h iy и h oy для двух рассматриваемых разбавленных растворов, нетрудно вычислить hx и h x и определить, какой фазой лимитируется процесс массопередачи. При этом для используемых растворов должны быть заранее определены т и т". Целесообразно выбирать такие пары растворов, которые имеют заметное различие в тангенсах угла наклона равновесной линии. Это позволит с большей точностью находить частные высоты единиц переноса. Подобный метод разложения коэффициентов массопередачи может быть применен как для насадочных, так и для тарельчатых колони [65, 66, с. 76]. [c.96]

    Весьма важные для химической технологии массообменные процессы происходят в системах с капельными жидкостями. Это процессы растворения и экстрагирования, кристаллизации, жидкостной адсорбции, для которых значения критериев Прандтля оказываются существенно больше единицы. При этом конвективный перенос целевого компонента становится сравнимым с диффузионным на таких малых расстояниях от твердой поверхности, на которых характер течения иотока капельной жидкости практически еще полностью определяется только силами вязкого трения, а толщины гидродинамического и диффузионного пограничных слоев становятся существенно неодинаковыми. Для капельных жидкостей, имеющих величины диффузионных критериев Прандтля порядка 10 , диффузионный пограничный слой имеет приведенную толщину, значительно меньшую, чем гидродинамический пограничный слой, что в значительной мере упрощает анализ процесса внешнего массообмена, поскольку при решении уравнения конвективно-диффузион-ного переноса компонента (1.21) в таком случае возможно воспользоваться приближенными решениями (1.7) для компонент скорости хюх и ту, справедливыми для малых расстояний от стенки. Кроме того, при анализе массообмена твердой поверхности с потоками капельных жидкостей обычно предполагается пренебрежимо малое значение стефановского потока. [c.33]

    Каждое из этих двух сопротивлений сложным образом зависит от различных величин. Так, внутреннее сопротивление определяется прежде всего диаметром пор материала и его толщиной, поскольку чем тоньше поры материала и чем длиннее путь влаги из внутренних зон к наружной поверхности, тем больше гидравлическое сопротивление, оказываемое пористой структурой процессу перемещения в ней влаги как в жидкой, так и в паровой фазе. Величина наружного диффузионного сопротивления зависит прежде всего от толщины пограничного слоя, которая в свою очередь определяется (см. гл. 1) параметрами, входящими в критерий Рейнольдса Ке = из1 , т. е. скоростью хи сушильного агента, его кинематической вязкостью V и характерным размером I наружной поверхности материала, например эквивалентным диаметром частиц высушиваемого дисперсного материала. [c.572]

    Турбулентный режим движения. Согласно распространенным представлениям о турбулентности определяющую роль в процессах переноса в турбулентном потоке играет пограничный слой, прилегающий к границе раздела фаз. По мере удаления от входа в трубу происходит формирование гидродинамического и диффузионного пограничных слоев. На некотором удалении от входа формируется гидродинамически стабилизированный поток, а также происходит стабилизация поля концентраций. Длины участков гидродинамической и концентрационной стабилизации, вообще говоря, разные. Они определяются соответственно значениями коэффициентов кинематической вязкости V и диффузии О. При V = Д профили скорости и концентрации в потоке совпадают. При V ф О скорости и концентрации определяются значением критерия Шмидта Зс = v/D. При 5с > 1, т. е. при V > D, формирование профиля скоростей опережает формирование профиля концентраций. При 5с < 1 между ними имеет место обратное соотношение. [c.86]

    Коэффициент испарения Р можно определить, зная величину диффузионного критерия Нуссельта, который для процесса испарения имеет следующий вид  [c.154]

    Уравнение диффузионного тока известно как уравнение Рэндлса — Шевчика. Уравнение (11.25) позволило определить главные признаки обратимых диффузионных процессов линейная зависимость высоты пика тока от концентрации деполяризатора, от скорости V в степени /2, от времени поляризации / в степени % (для РКЭ). На основании уравнения (11.25) Семерано пред-лол ил свой первый критерий диагностики обратимого диффузионного тока, линеаризовав данное уравнение [c.36]

    Число переменных, которые нужно учесть, и соответственно сложность проблемы значительно уменьшаются, если исследование производится по первому варианту. В таком случае физические параметры реакционных смесей в модели и натуре одинаковы. Химико-технологический процесс, происходящий в реакционном объеме, настолько сложен, что невозможно осуществить полное подобие явлений (с учетом всех переменных факторов). Поэтому полученные ранее формальным путем критерии подобия процессов гомогенных и гетерогенных не могут быть использованы полностью. Если бы каждое частное явление, влияющее на ход реакции (гидродинамика, теплообмен конвекцией, кондукцией и излучением, различные виды массообмена, различные стороны химической реакции), в равной степени было бы способно определять конечный эффект процесса, то каждый из ранее полученных критериев был бы существенным при исследовании явления. Однако реальные процессы в большинстве случаев зависят только от некоторых явлений сложного комплекса и протекают либо в кинетической, либо в диффузионной области. В таком случае при решении вопроса должны приниматься во внимание только те критерии, которые соответствуют этим существенным влияниям. Остальные же критерии, отражающие роль несущественных для процесса явлений, могут быть исключены. [c.155]

    Применение указанных соотношений линейных размеров, сил или энергий позволяет образовать соответствующие безразмерные отношения-критерии подобия для разл. процессов. Так, в гидродинамике принято рассматривать шесть общих сил, действующих в потоке жидкости или газа инерции (Р ), трения, или вязкости (Г,), давления (Ед), упругости (Еу), поверхностного натяжения ), гравитации (Р ). С использованием этих сил можно образовать 15 соотношений из двух сил PJP , , FJPy, Р Р , Рц/Рт, Ры1Рг, Ед/Еи и Д- Поскольку отдельные критерии определяются как соотношения независимых сил, одни критерии м. б. выражены через другие при этом любая комбинация из критериев подобия также представляет собой критерий подобия рассматриваемых физ. явлений. Сходным путем составляют критерии теплового подобия и их диффузионные аналоги. [c.596]

    Уравнение (1.20) вместо размерного времени содержит без-)азмерное время нестационарного диффузионного процесса "Од = Dt/L — диффузионный критерий Фурье. Безразмерный параметр Ре = WoL/D служит мерой отношения интенсивностей конвективного и диффузионного переноса целевого компонента в движущемся потоке. При достаточно большом значении Ре слагаемыми правой части уравнения (1.20) можно пренебречь по сравнению с членами, ответственными за конвективный перенос (группа вторых слагаемых уравнения), а в противоположном случае, когда Ре 1, наоборот, можно пренебречь конвективными членами уравнения (1.20) и полагать, что нестационарное распределение концентраций целевого компонента практически определяется только молекулярно-диффузионным переносом. Существенно, что значение критерия Ре характеризует меру отношения интенсивностей конвективного и диффузионного переносов компонента в основном потоке движущейся среды, а в непосредственной близости от твердой поверхности такое соотношение изменяется, поскольку в пределах пограничного слоя уменьшаются значения компонент скоростей потока. [c.25]

    Параметр N определяется как отношение скорости источника или стока массы к-го компонента к скорости конвективного переноса, критерий Дамкеллера — как отношение скорости источника или стока массы к-го компонента к скорости диффузионного процесса. [c.80]

    Рассмотрим вначале воздействие акустических течений и микропотоков на диффузионные процессы на примере растворения мелких твердых частиц, взвешенных в жидкости. Для этого напишем точное уравнение диффузии (6.1) с учетом гидродинамических процессов. Уравнение (6.1) по форме напоминает уравнение Навье—Стокса, поэтому по аналогии с критерием Рейнольдса течение процесса будет определять критерий Пекле [c.148]

    Если определяющими процесс условиями являются теплопередача или диффузионный массообмен, требуется рассмотрение динамического подобия, так как коэ( )фициенты обоих процессов зависят от числа Рейнольдса. Изучение одного только химического подобия будет достаточным, если скорость процесса определяется скоростью химической реакции. В таком случае достаточно равенство критерия Дамкелера гЫСи. В этом комплексе выражение Ыи—время пребывания смеси в зоне реакции. Таким образом, химическое подобие достигается при условии, что скорость реакции, время пребывания и начальные концентрации одинаковы в модели и в прототипе. Используя закон действия масс для реакции л-го порядка [c.347]

    Рассмотрим, напр, в качестве двух последоват стадий мол диффузию и хим р-цию с характерными временами и соответственно Отношение этих времен обычно наз критерием Дамкелера Оа Если на масштабе Lвьшолняется условие Оа 1, то за время порядка успевает установиться диффузионное равновесие, т е система оказывается однородной по составу, а концентрации каждого компонента в разных фазах системы связаны термодинамич соотношениями через коэф распределения Это-т наз кинетич режим, при к-ром изменение концентраций компонентов определяется только скоростью собственно хим превращения и м б рассчитано по законам хим кинетики С ростом Ь увеличивается что в конечном счете приводит к диффузионному режиму (условие Оа I), при к-ром за время порядка в каждой точке реакц зоны устанавливается хим равновесие, а наблюдаемая скорость процесса определяется исключительно доставкой компонентов к зоне р-ции [c.632]

    НОГО ИЛИ вычисленного по значению электропроводности и числу переноса коэффициента диффузии. Математическая теория, данная автором настоящего сообщения, действительно позволяет осуществить подобное сравнение и не только в случае изотопного обмена, но и в случае изоморфного замещения, например, иона бария на ион радия, когда распределение микро- и макрокомпонента в системе раствор — осадок или осадок — расплав, при достижении равновесия подчиняется закону Хлопина. Применение критерия Полесицкого к системе AgX (в осадке) — AgNOs (в водном растворе) показывает, например, что диффузионный механизм изотопного обмена ионами серебра способен, по крайней мере, конкурировать с перекристаллизацией в случае свежеосажденного галогенида серебра и полностью определяет процесс обмена в случае несклонных к перекристаллизации осадков — состаренных или полученных, например, растиранием плавленого галогенида. Сравнение коэффициентов диффузии ионов серебра, рассчитанных из опытов по обмену и по данным иных определений, данное в нашей работе [3], в настоящее время может быть сделано более полным. Если ограничиться случаем бромида, то следует отметить, что ранее коэффициент диффузии ионов серебра в кристаллах AgBr (при I = 25°) был вычислен по измерениям коэффициента электропроводности и по величине коэффициента самодиффузии иона Ag , измеренного (при t = 300°С) Тубандом и сотрудниками методом изоморфных индикаторов (Озоо°= 1 10 см /сек). В настоящее время мы располагаем результатами прямых определений коэффициентов диффузии [4], см. также [5—8], выполненных методом радиоактивных индикаторов (Озоо° 1 10 см /сек). Исправленный соответственно новым данным коэффициент самодиффузии катиона в бромиде серебра следует считать равным 2- 10" см /сек (считая число переноса иона серебра в кристаллах осадка равным единице), что, учитывая приближенный характер расчетов, вполне удовлетворительно согласуется с оценкой величины этого коэффициента, данной нами по результатам опытов по обмену (Оа +=6 10 см /сек). [c.80]

    Иначе обстоит дело с внешним массообменом. Поле скоростей, определяющее роль конвективного вклада.в массо- и теплоперенос, в этом случае существенно зависит от объемной концентрации частиц. Если, например, описывать поле скоростей в приближении ячеечной модели, то, как следует из формулы (1.83), с ростом е внешний радиус эквивалентной сферы уменьшается и, следовательно, поле скоростей вокруг пробной частицы локализуется в более тонкой области. Однако зона диффузионного взаимодействия частицы с потоком определяется не размером условной гидродинамической ячейки, а степенью конвекции жидкости и при малых значениях Ре, как известно, может составлять величину порядка радиуса частицы. Это накладывает определенные ограничения на применение таких моделей для описания массо- и теплообмена при произвольных значениях критерия Пекле. Исключение составляют большие значения Ре, когда фронт диффузионной волны вокруг каждой частицы сосредоточен в весьма тонкой области, не выходящей за пределы внешней границы гидродинамической ячейки. В этом случае решение внешней задачи можно осуществить в рамках теории диффузионного пограничного слоя. Такой подход может быть использован в первую очередь для расчета массообмена в процессах жидкостной экстракции и абсорбции, поскольку -В системах жидкостьжидкость или жидкость — газ значения Ре практически всегда велики. [c.108]

    Характерной особенностью турбулентных струй горящего газа в свободной окисляющей среде является диффузионное догорание клочкообразных масс горючего газа. Как показали и эти исследования, процесс догорания в основном определяет длину турбулентного диффузионного факела. Эти исследования подтвердили, что критерий vJgdй характеризует длину турбулентного диффузионного факела, впервые нред.тожетгаого И. Б. Китаевым и П. В. Левченко 187]. [c.30]


Смотреть страницы где упоминается термин Критерии определяющие диффузионных процессов: [c.78]    [c.139]    [c.268]    [c.282]    [c.163]    [c.212]    [c.56]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.464 ]




ПОИСК





Смотрите так же термины и статьи:

Критерий процесса



© 2025 chem21.info Реклама на сайте