Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавка и спекание металлов в вакууме

    Получение эталонов-сплавов осуществляется двумя путями 1) плавка материала, состоящего из смеси-шихты анализируемых компонентов для сохранения расчетного состава шихты, плавку проводят в вакууме, атмосфере инертных газов или применяют другие способы, предотвращающие изменение расчетного состава [450, 451] (для анализа особо чистых металлов, с содержанием примесей <10 %, способ применяется редко) 2) применение методов порошковой металлургии, например, получение образцов спеканием прессованных смесей металлических порошков при определенных термических условиях. Термическая обработка прессованных образцов позволяет унифицировать структуру и механические свойства образцов и эталонов. [c.361]


    Плавка и спекание металлов в вакууме [c.76]

    Компактный вольфрам получают восстановлением УОз водородом при 850—1200 С и последующим спеканием образовавшегося порошка. Особо чистые Мо и Ш готовят восстановлением МоРе и WF6 водородом при нагревании. Крупнокристаллические Мо и У получают плавком металлов, спеченных из порошка, при нагревании в вакууме мощным электронным лучом. [c.529]

    Металлы выделяются в виде порошков. Компактные молибден и вольфрам получают спеканием порошков в атмосфере водорода. Метод порошковой металлургии широко используется. Для получения заготовок молибдена и волы )рама в крупных слитках при-мер(яют дуговую плавку, процесс ведут в дуговых печах и в вакууме. [c.379]

    Компактный металл производят либо методами порошковой металлургии, спекая спрессованные из порошков ниобия штабики в вакууме при 2573 К, либо электронно-лучевой и вакуумно-дуговой плавками. Вакуумным спеканием получают ниобий чистотой более 99,6 % №, дуговой плавкой — чистотой 99,7—99,8 % ЫЬ, электронно-лучевой плавкой — чистотой 99,88—99,9 % ЫЬ, [c.315]

    Получение металла в компактном виде осуществляют путем спекания предварительно спрессованных из порошка заготовок прямым пропусканием тока при 2500—2700 °С или косвенным нагреванием при 2200—2500 °С в вакууме. При этом чистота металла повышается до 99,9 —99,95 %. Для получения больших слитков и для рафинирования применяют электровакуумную плавку в дуговых печах с расходуемым электродом и в электронно-лучевых печах, В процессе вакуумного переплава общее содержание кислорода, азота и углерода снижается от 0,1—0,5 до 0,01—0,05 %. Особо чистый компактный тантал (монокристаллы) получают бестигельной электронно-лучевой зонной плавкой. [c.327]

    В последней стадии технологии — получения металлов, лигатур и сплавов, учитывая высокие требования к чистоте конечной продукции, а также большое разнообразие свойств редких металлов и их исходных соединений, применяются в различных случаях многочисленные и разнообразные прецизионные металлургич. процессы высокотемпературные процессы восстановления газами, углеродом, другими металлами (см. Металлотермия), термическая диссоциация соединений электролитич. процессы как в водных, так и в расплавленных средах вакуум-термич. процессы, вакуумная, дуговая, электроннолучевая, зонная плавка, иногда дистилляция металлов высокотемпературное спекание порошков тугоплавких металлов, а в случае повышенных требований к чистоте тугоплавких металлов и их сплавов (в особенности по газовым п легко летучим примесям) или для получения крупных заготовок применяется их переплавка в высоком вакууме. [c.302]


    Одпако если современная техника получения высокого вакуума зародилась и получила свое основное развитие на базе производства электровакуумных приборов, то в настоящее время с получением вакуума связаны весьма многие другие области науки и техники. Достаточно упомянуть вакуумную плавку металлов, спекание порошков ряда металлов в вакууме, нанесение тонких пленок на твердых поверхностях, сушку под вакуумом, вакуумную разгонку жидких и твёрдых веществ, пропитку различных материалов в вакууме. Укажем, наконец, что исследования строения атома и атомного ядра, столь успешно завершившиеся практическим использованием атомной энергии, широко использовали успехи техники получения высокого вакуума. [c.54]

    Компактный вольфрам получают восстановлением WOj водородом при 850-12(Ю С и последующим спеканием образовавшегося порошка. Особо чистые металлы Мо и W производят восстановлением фторидов МоРб и WF водородом при нагревании. Крупнокристаллические Мо и W получают плавкой металлов, спеченных из порошков, при нагревании в вакууме мощным электронным лучом. [c.509]

    Т. с. получают методами порошковой металлургии (прессованием с последующим спеканием), а также нлавле-нием. Порошки металла прессуют под давлением 21—85 кгс/мм , при к-ром плотность достигает 60—70% от теоретической, после чего материал подвергают отжигу в вакууме при т-ре 1980—2500° С в течение нескольких часов. Иногда для получения более плотного материала, обладающего высокой пластичностью, отжиги чередуют с ковкой или прокаткой. В произ-ве Т. с. распространены плавка с расходуемым электродом, электроннол5 чевая и вакуумная дуговая плавки. Плавка в вакууме приводит к значительному уменьшению содержания иримесей. Более полная очистка от кислорода достигается раскислением расплава углеродом. Электроннолучевая плавка, отличающаяся сравнительно неболь- [c.496]

    Иридий поставляется в виде порошка, фольги, прутков и проволоки. Для изготовления иридиевых сплавов применяют дуговую, электроннолучевую и, индукционную плавку в среде аргона, гелия или в вакууме. В качестве исходного материала для плавки используют прессованный и спеченный аффинированный порошок или губку. Прессование порошка обычно ведут при давлении 390—600 МПа, последующее вакуумное спекание — при 1600—2100 °С. Иридий — весьма хрупкий нетехиологич-ный металл, поэтому его обработку давлением следует проводить при достаточно высоких температурах. Как правило, температура горячей деформации иридия составляет 1000—1500 °С и лишь в отдельных слу- [c.517]

    Для получения компактного металла применяется как металлокерампч. метод, состоящий в спекании брикетов из порошка металла в вакууме при 1100—1350°, так н метод литья в последнем случае используется плавка Т. в индукционных печах в тиглях нз ZrOa или ВеО, а также из графита или же дуговая плавка в водоохлаждаемом медном тигле в атмосфере инертного газа с нерасходуемым вольфрамовым или расходуемым торцевым электродом. Для получения компактного Т. особо высокой чистоты, в особеп-иости по содержанию газовых прпмесей, используется метод термич. диссоциации его иодида, получеи-иого взаимодействием черновой стружки металла с иодом ThJ4 диссоциирует на металлич. нити, нагретой до U00—1700 прп атом происходит существенная очистка Т. от ряда примесей. Так как Т. обладает хорошими пластич. свойствамп, ои может быть получен в виде листов, проволоки и др. изделий. [c.114]

    Физические и химические св011ства. Б. — металл светло-серого цвета, имеет гексагональную плотно упакованную решетку с параметрами а = 2,2856 А, с = 3,5831 А атомный радиус 1,13 А, ионный радиус Ве2 0,34А плотн. 26 1,8477 т. пл. 1285° т. кип. 2970° зависимость давления пара Б, от темп-ры Ргтм. = 5.186 + 1,454. Ю " 3 - 10,700/Т уд. теплоемкость 0,481 кал/г град (0—100°) теплота плавления 2,8 0,5 ккал/г-атом термич. коэфф. линейного расширения 13 10 (О — 200°) электропроводность составляет 40% от моди. Твердость Б. по Бринеллю 97—114 кг/мм модуль упругости 30 000 кг/мм , предел прочности при растяжении для выдавленною прутка до 60 кг/мм , отожженного — ок. 35 кг/мм . Уд. прочность Б. (отнесенная к уд. весу) значительно превосходит уд. прочность других металлов и сплавов, однако применение Б.в качестве конструкционного металла затруднено из-за е о хрупкости на холоду, что объясняется особенностями строения кристаллич. решетки Б. и наличием примесей. Хрупкость затрудняет также и обработку Б. Заготовки из Б. получают прессованием порошка с последующим спеканием при 1180—1200° или горячим прессованием порошка при 1120—1150°, или плавкой в вакууме. Изделия из заготовок получают обработкой давлением при повышенных темп-рах (выдавливанием, прокаткой), иногда с последующей обработкой резанием. Б. в жидком состоянии полностью смешивается со многими металлами, напр, с А1, Си, Ке, Со, N1, Ъп и др., не смешивается с Мд [c.211]


Смотреть страницы где упоминается термин Плавка и спекание металлов в вакууме: [c.1221]    [c.175]    [c.568]    [c.225]    [c.350]    [c.209]    [c.74]    [c.361]    [c.411]    [c.13]    [c.57]    [c.418]   
Смотреть главы в:

Вакуум и его применение -> Плавка и спекание металлов в вакууме




ПОИСК





Смотрите так же термины и статьи:

Металлы плавка под вакуумом

Плавка

Спекание

Спекание в вакууме



© 2025 chem21.info Реклама на сайте