Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавка вакуумная

Рис. 85. Схема вакуумной дуговой печи с расходуемым электродом для плавки титана Рис. 85. Схема <a href="/info/21292">вакуумной дуговой печи</a> с расходуемым электродом для <a href="/info/20437">плавки</a> титана

    Металлокерамическое производство бе -р и л л ИЯ [7]. Технологический процесс начинается со стадии измельчения слитков бериллия, полученных вакуумной плавкой, или электролитических чешуек. Чешуйки измельчают в шаровой мельнице мокрого помола. Затем порошок обрабатывают щавелевой кислотой для извлечения примеси хлора и хлоридов (об этом говорилось выше в связи с очисткой металла). Слитки переводят в стружку, которую затем превращают в порошок в дисковых истирателях, облицованных бериллием и работающих в атмосфере аргона. На следующей стадии процесса порошок прессуют. При холодном прессовании требуется давление 8—12 т/см с последующим спеканием при температуре, близкой к плавлению бериллия (1100—1200°). Более прогрессивный метод — горячее прессование, которое осуществимо в широком диапазоне температур (500—1100°) при 510° требуется давление 3,94 т/см , при 1100° достаточно 5—10 кг/см . [c.218]

    При плавке вакуумной меди требуемая чистота ее достигается дегазацией водородом. Некоторые виды термической обработки [c.77]

    Водородное восстановление Зонная плавка Зонная плавка, вакуумная перегонка [c.72]

    При вакуумной плавке алюминиевых сплавов дегазация начинается с момента загрузки шихты и начала откачки из печи газа, вследствие чего достигается более полная вакуумная обработка шихты и расплава. В результате получают сплав с минимальным содержанием газов и твердых неметаллических включений. [c.79]

    Для того чтобы металлы не окислялись при нагревании в процессе технологических операций, надо эти операции проводить в вакууме. Современное машино- и приборостроение широко используют вакуум для изготовления деталей и узлов машин диффузионная сварка в вакууме, сварка электронным лучом в вакууме, вакуумная пайка деталей и узлов, вакуумная плавка металлов, нанесение на металл слоев других металлов и неорганических материалов в вакууме и т. д. [c.167]

    Широкое использование в промышленности, в основном применительно к металлотермическому бериллию, нашла вакуумная плавка. Она позволяет значительно повысить чистоту металла. Использование этого метода для электролитического бериллия нельзя считать целесообразным из-за того, что вакуумная плавка практически не повышает чистоту электролитического бериллия, которая значительно выше, чем у металлотермического. Кроме того, получаемые при плавке электролитических чешуек слитки металла затем снова измельчают до порошка, так как изделия из бериллия в основном изготавливают методами порошковой металлургии поэтому при очистке электролитического металла не имеет смысла укрупнять его частички. [c.215]

    Так, например, по данным [339]), степень чистоты металлического германия достигла значения 99,99999999%. Значительно повысилась также степень чистоты и других выпускаемых рассеянных элементов (галлия, индия и др.), что имеет исключительно важное значение для их использования в радиоэлектронике. Высокая чистота достигается применением таких методов очистки, как зонная плавка, вакуумная дистилляция и др. [c.21]


    Компактный металл производят либо методами порошковой металлургии, спекая спрессованные из порошков ниобия штабики в вакууме при 2573 К, либо электронно-лучевой и вакуумно-дуговой плавками. Вакуумным спеканием получают ниобий чистотой более 99,6 % №, дуговой плавкой — чистотой 99,7—99,8 % ЫЬ, электронно-лучевой плавкой — чистотой 99,88—99,9 % ЫЬ, [c.315]

    Водород мало влияет на изменение прочности титана, но увеличивает чувствительность его к надрезу. При насыщении титана водородом в структуре обнаруживаются выделения гидрида титана при этом резко уменьшается ударная вязкость. Насыщение водородом, вызывающее появление водородной хрупкости титана, происходит при его нагревании и травлении. Поэтому в процессе изготовления и обработки деталей из титана и его сплавов необходимо предпринимать меры, предотвращающие насыщение материала водородом. Наилучшими методами удаления водорода из титана являются вакуумная плавка, вакуумный отжиг, легирование элементами, увеличивающими растворимость водорода в титане, и т. д. [c.17]

    Высокомолекулярные вещества можно очищать от примесей путем переосаждения, экстракции, зонной плавки, вакуумной отгонки примесей. Снизить концентрацию неустойчивых групп можно путем прогрева полимера в инертной атмосфере или в ва- [c.120]

    Применение стойких сталей. Аустенитные стали с повышенным содержанием никеля проявляют наименьшую склонность к коррозионному растрескиванию. В хлоридных средах весьма эффективна замена хромоникелевой стали сплавами никеля, в частности инконелем. Иногда выгодно (как и в случае точечной коррозии) в растворах хлоридов вместо высоколегированных хромоникелевых сталей применять обычные углеродистые стали, не склонные к коррозионному растрескиванию в этих средах, несмотря на повышенную, но гораздо менее опасную равномерную коррозию. Почти все чистые металлы нечувствительны к коррозионному растрескиванию. Сплавы высокой чистоты, получаемые вакуумной плавкой, обнаруживают особенно высокое сопротивление этому виду коррозии. [c.453]

    Наиболее чистые металлы получают иодидным методом или с помощью очистки их вакуумной плавкой рассредоточенным электронным пучком, или методом зонной плавки в вакууме. [c.98]

    При водородном или металлотермическом восстановлении получаются либо порошкообразные, либо губчатые металлы. Для получения компактных металлов и их дополнительной очистки используют обычно вакуумную плавку с применением электронно-лучевого метода нагрева или плавку в электродуговых печах с расходуемым электродом из чернового металла в водоохлаждаемых медных тиглях. После такой обработки существенно меняются многие характеристики металлов. Так, если черновой хром представляет собой один из наиболее твердых и хрупких металлов, то очищенный хром пластичен и легко поддается механической обработке. [c.336]

    Получаемый таким образом рениевый порошок горячим прессованием переводят в компактное состояние. Рениевые штабики при дуговой или электронно-лучевой вакуумной плавке превращают в слитки металлического рения. Помимо этого способа, используют также электрохимическое восстановление перрената калия или аммония. Рений можно получать и путем термической диссоциации -галогенидов. Галогенидный способ используют для получения чистого рения. Разложение галогенидов осуществляют на раскаленной нити из чистого рения. [c.374]

    Вещества особой чистоты получают или глубокой очисткой образцов, полученных обычными методами, или выделением особо чистого вещества из другого, более сложного, особой чистоты, или, наконец, путем синтеза сложного особо чистого вещества из простых особо чистых веществ. Во всех случаях необходима глубокая очистка веществ. Для этого используются химические и особенно физико-химические методы дистилляция и ректификация экстракция различными растворителями сорбционные методы (хроматография, ионный обмен на колонках и пр.) кристаллизационные методы (направленная кристаллизация, зонная плавка и др.) электролиз (см., например, рафинирование меди в гл. УИ1, 7) вакуумная дуговая и электронно-лучевая плавка, широко используемая в промышленности для получения чистых циркония, тантала, ниобия, вольфрама и других металлов другие методы. [c.258]

    Переплавка веществ в вакууме. Способ часто используется как первый этап глубокой очистки. Одна из самых простых схем процесса сводится к следующему. В кварцевую ампулу вводят очищаемое вещество. Ампулу соединяют с вакуумной установкой и помещают в электрическую печь. Когда в ампуле будет достигнуто нужное давление, печь нагревают до тех пор, пока вещество не начнет плавиться. Летучие примеси откачивают вакуумной установкой столько времени, сколько это необходимо для очистки в каждом отдельном случае. В промышленном масштабе очищают,металлы дуговой плавкой, а в последнее время и электронно-лучевой плавкой в вакууме. Коротко рассмотрим метод электронно-лучевой плавки. [c.259]

    Для бестигельной зонной плавки с помощью электронного луча образец в виде вертикально поставленного стержня соединяют с положительным полюсом высоковольтного источника напряжений и окружают кольцевым катодом, который может перемещаться вдоль образца вверх. Эмиттируемые электроны фокусируются на небольшую зону образца, которая плавится и поддерживается поверхностным натяжением. В этом случае образец вместе с устройством для электронной бомбардировки помещают внутрь плавильной камеры, соединенной с вакуумной системой. Как и в индукционном нагреве, перемещая расплавленную зону несколько раз снизу вверх, можно очистить вещество. Можно выращивать и монокристаллы кремния и др. [c.264]


    Металлотермический после вакуумной плавки. ....... 1,1 10-1 — 1,2-10- 7-10-3 1,3-10-2 6-10-2 1.2 9-10-3 [c.213]

    Разнообразное применение галлий находит в связи со своей легкоплавкостью и малой летучестью. В атомной технике было предложено использовать его в виде сплавов с оловом и цинком в качестве теплоносителя в ядерных реакторах, а также в виде сплава с индием в качестве носителя Y-излучения в радиационных контурах ядерных реакторов. Такой эвтектический сплав (14,2 ат. % индия) благодаря своей низкой температуре плавления (15,8°) и склонности к переохлаждению остается жидким при комнатной температуре [80]. Предложено много других областей применения легкоплавких сплавов галлия для наполнения высокотемпературных термометров (600—1500°), для устройства гидравлических затворов в вакуумных приборах, плавких предохранителей и т. п. [c.245]

    Большое значение имеют плазменные процессы в металлургии. Например, плазму применяют для разложения руд, для плавки тугоплавких металлов (плазменная плавка эффективнее, чем электронно-вакуумная), для резки и сварки металлов, для получения тугоплавких материалов (нитридов, карбидов металлов) и во многих других случаях. [c.18]

    При вакуумной плавке растворенные в металлах газы — азот и водород — почти полностью удаляются при этом улучшаются физико-механические свойства металлов и сплавов. Аналитическое определение содержащихся в металлах растворенных газов также производится с применением вакуума. Растворы таких газов в воде, как ЫНз (нашатырный спирт) и НС1 (соляная кислота), широко применяются в различных отраслях промышленности и для лабораторных целей. В производстве этих ценных химических веществ предусматривают абсорбцию газов NH3 и НС1 водой при наиболее благоприятных условиях. [c.253]

    Полученный электролитический алюминий содержит 98,5—99,8% основного вещества. Примесями являются железо, медь, титан, кремний, механически захваченные при кристаллизации криолит, глинозем, уголь. Сырой металл сначала переплавляют, а затем подвергают электрохимическому рафинированию в расплаве из фторидов алюминия и натрия и хлорида бария. При рафинировании чистота алюминия достигает 99,9%. Особо чистый алюминий, необходимый, например, в электронной технике, получают специальными методами вакуумной дистилляцией и зонной плавкой. [c.333]

    Для высокопрочных дисперсионно-твердеющих сталек характерна также высокая чувствительность к надрезам и неметаллическим включениям. Применение более чис тых шихтовых материалов и качественных методов вы плавки (вакуумная плавка) позволяют существенно повы сить пластичность высокопрочных сталей и, следователь но, надежность изделий. [c.230]

    Резкое повышение пластичности и вязкости хромистых ферриз -ных сталей возможно путем ограничения в их составе примесей внедрения. Эта возможность стала реальной после ввода в эксплуатацию крупнотоннажных вакуумных печей и освоения технологии плавки с продувкой расгшава аргоном или аргонокислородной [c.243]

    Очистка свинца зонной плавкой. Свинец помещают в лодочку длиной 01С0Л0 20 см и проводят его очистку (рпс. 24). Расилаилеппую зону (300—350 °С) перемещают со скоростью около 1,5 мм/мип. При очистке происходит уменьшение примесей олова, ypijMiii, кадмия, индия, ртути и некоторых других металлов. Примесь висмута почти не удаляется. При строго горизонтальном положении трубки очистку можно вести при помещении налочки свинца непосредствеино в трубку. Поскольку свинец легко окисляется на воздухе, трубку необходимо присоединить к вакуумному насосу, хотя бы водоструйному. [c.189]

    Слоистая структура графита обусловливает легкое расслаивание его на отдельные чешуйки (слабые силы Ван-дер-Ваальса между плоскостями), что определяет его смазочные свойства и применение в карандашах. Нелокализованные я-связи обусловливают большую электропроводность графита вдоль плоскостей и черный цвет. Благодаря малой химической активности, тугоплавкости и хорошей проводимости графит широко используется в качестве анодов в электролизных ваннах, в частности, при получении алюминия. Из него готовят огне-упорньш тигли. В графитовых лодочках осуш,ествляют зонную плавку германия. О применениях графита в вакуумной технике говорилось в гл. VI, 4. [c.290]

    Бескислородная медь высокой проводимости изготовляется из обычных сортов меди или из электролитической меди путем плавки в атмосфере чистой сухой окиси углерода. В такой меди остается меньше 0,05% примесей. Путем плавки в вакууме наиболее чистых сортов меди получают образцы, в которых содержится не более 0,01% примесей. Вакуумная медь имеет ббльшую плотность, чем бескислородная. Из нее для электровакуумной промышленности изготовляют медные листы, ленты, полосы, трубы, прутки, проволоку и пр. Медь используется для изготовления анодов мощных генераторных ламп, различных деталей магнетронов, волноводов высокочастотных приборов и пр. При этом важную роль играет большая теплопроводность меди, газонепроницаемость и возможность получения вакуумно плотных спаев со стеклом. Медная проволока применяется для внешней части выводов различных приборов и в других целях. [c.357]

    Окись бериллия, как и сам металл, находит применение в ядерной технике в качестве замедлителя и отражателя нейтронов и как конструкционный материал, особенно в высокотемпературных реакторах. В традиционных областях применения значение окиси бериллия не только сохранилось, но и увеличилось как огнеупорный материал ВеО в ряде случаев незаменима. Это касается, в частности, изготовления тиглей для плавки металлов (Ве, U, Th, Ti), где используется такое уникальное свойство ВеО, как необычайно высокая теплопроводность наряду с огнеупорностью. Широко используется при конструировании индукционных печей и вакуумных нагревательных приборов. Весьма перспективным огнеупорным материалом является пористая керамика из окиси бериллия, получаемая пенометодом [51] и выдерживающая температуру 1750°. В связи с высокой устойчивостью к тепловому удару ВеО находит применение в авиации для изготовления лопастей газовых турбин и деталей реактивных двигателей. Важная область применения окиси бериллия — получение медно-бериллиевой лигатуры, используемой в производстве бериллиевых бронз. Применяется ВеО и как катализатор в некоторых органических синтезах. [c.188]

    Зонную плавку антимонида проводят в атмосфере водорода в обычных аппаратах с нагревателем сопрртивления. Иногда, чтобы предотвратить загрязнение при перегрузке, вакуумную обработку и зонную плавку проводят в совмещенном аппарате [146]. Для очистки антимонида требуется от 20 до 40 проходов зоны со скоростью 25— 30 мм/ч. [c.323]

    Первоначально применялись дуговые печи с нерасходуемым электродом (вольфрам, графит). Плавка в них страдает существенными недостатками слиток загрязняется материалом электрода, проплавляется плохо, вследствие чего при последующей его обработке до 25% Т1 уходит в отходы необходим вторичный переплав слитка. Более совершенна плавка с расходуемым электродом, который сваривают из блоков, спрессованных из титановой губки (рис. 85). Этот способ позволяет получать более однородные слитки большого диаметра (до 600 мм) и массой до нескольких тонн как чистого титана, так и его сплавов. Печи для плавки титана — взрывоопасные агрегаты, поэтому при работе на них необходимо строго соблюдать правила техники безопасности. Основная опасность вакуумной плавки — прожигание стенкм кристаллизатора дугой. Перспективна электрошлаковая плавка с флю- [c.275]

    Насыщение производят вакуумным напылением или путем на> плавки легирующего компонента. После этого изделия обязательно подвергают термообработке. При этом в отдельных случаях обра зуются интерметаллиды. Так, при насыщении поверхности молиб- дена кремнием и последующей обработке изделия образуется интер металлид Мо312, преграждающий доступ воздуха к изделию. [c.404]

    Мышьяк, сурьму и висмут в свободном состоянии получают обычно путем карбо- или металлотермического восстановления оксидст. Поскольку мышьяк и его аналоги обычно ассоциированы со многими металлами, в процессе восстановления образуются сплавы. Восстановленный полупродукт подвергают хлорированию. Летучие хлориды мышьяка, сурьмы и висмута отгоняют, подвергают дистилляции, а затем восстанавливают, например водородом, цинком и т.п. Окончательная очистка мышьяка достигается вакуумной пересублимацией. Сурьму и висмут подвергают глубокой очистке методами направленной кристаллизации или зонной плавки. Такие методы очистки позволяют получить мышьяк, сурьму и висмут с суммарным содержанием примесей, не превосходящим Ю —10" масс, долей, %. [c.419]

    Получаемый таким образом рениевый порошок горячим прессованием переводят в компактное состояние. Рениевые штабики при дуговой или электронно-лучевой вакуумной плавке превращают в слитки металлического рения. Рений можно получить и ПJтeм термической диссоциации галогенидов. Разложение галогенидов осуществляют на раскаленной нити из чистого рения. [c.475]

    Методы получения полупроводниковых материалов. Исходными материалами для получения чистого кремния и германия являются тетрахлориды, полученные из технических продуктов и прошедшие очистку вакуумной разгонкой и фракционированием. Из тетрахлоридов 8(С14 и ОеСЦ, представляющих собой жидкости (см. с. 429), выделяют снова элементарный 5 и Ое, которые подвергают вакуумной плавке для удаления примесей и превращают в монокристаллы. [c.448]


Смотреть страницы где упоминается термин Плавка вакуумная: [c.162]    [c.223]    [c.223]    [c.515]    [c.134]    [c.498]    [c.434]    [c.210]    [c.211]    [c.323]   
Общая химия (1987) -- [ c.194 ]

Окисление металлов и сплавов (1965) -- [ c.273 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.609 ]




ПОИСК





Смотрите так же термины и статьи:

Газовыделение в процессе плавки и расчет производительности вакуумных насосов

Натекание при вакуумной плавке

Плавка

Плавка в вакуумных печах сопротивле

Плавка в вакуумных печах сопротивления

Способы вакуумной экстракции и вакуумной плавки



© 2025 chem21.info Реклама на сайте