Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образцы на прочность связи с другими

    Изучение рельефа поверхностей разрыва твердых тел, в том числе твердых полимеров (кристаллических и аморфных), а также наблюдение роста трещин в нагруженном материале методами микроскопии и другими приводит к выводу, что во всех твердых телах трещины растут при напряжениях растяжения, значительно меньших обычно наблюдаемого предела прочности. Мюллер , по-видимому, первый обнаружил, что у стекол наблюдаются две стадии разрыва. Первая стадия связана с медленным ростом первичной трещины, приводящей к образованию зеркальной поверхности разрыва вторая—с прорастанием первичной и вторичных трещин со скоростью, близкой к скорости звука, с образованием шероховатой зоны. На первой стадии скорость роста трещины зависит от напряжения (рис. 8), температуры и среды, в которой находится образец. При температуре жидкого воздуха зеркальная часть на поверхности разрыва практически отсутствует, разрыв сразу принимает катастрофический характер, а временная зависимость прочности практически не наблюдается. [c.27]


    Разрушение полимерных материалов представляет собой сложный комплекс явлений, который, подобно другим их свойствам, развивается как кинетический процесс а его скорость определяется соотношением масштабов внешних факторов (температуры, напряжений и т. п.) и внутренних параметров, зависящих от характеристик молекулярных движений. Теоретические оценки прочности основываются на расчете работы разъединения среды по некоторому сечению, связь через которое до разрыва осуществлялась молекулярными силами. Чрезвычайно завышенные оценки разрушающего напряжения, получаемые при таком подходе, приводят к выводу о резкой неоднородности свойств материала в каждом сечении, вследствие чего следует полагать, что процесс разрушения начинается в области, в которой сочетаются локальные перенапряжения с ослабленностью молекулярных взаимодействий. Будет ли развиваться этот процесс дальше или закончится в данном месте на образовании микроразрыва, зависит от структуры полимера в целом. В первом случае процесс распространения микроразрыва приведет к формированию единой магистральной трещины, которая в конце концов разделит образец на части во втором — будет образовываться большое число микроразрывов. [c.226]

    Испытания резины на отрыв от металла при сдвиге заключаются в параллельном смещении одной металлической пластинки относительно другой, причем между ними находится привулканизован-ный к ним образец резины (рис. 19.1 б). Необходимое для отрыва резины от металла усилие служит характеристикой прочности связи резины с металлом при деформации сдвига. Для определения прочности связи при сдвиге может служить любая разрывная машина, мощность которой не превышает величину абсолютной нагрузки при сдвиге более чем в пять раз при скорости разрыва 50 мм в минуту. [c.541]

    Известны методы определения прочности связи единичной нити корда с резиной в динамических условиях. В этих случаях удается нагружать не только образец в целом, но и отдельную нить и точно задавать основные параметры режима [1]. Описан, например, метод многократных деформаций изгиба на роликах резиновой пластины с завулканизованными в нее нитями корда [111J. После утомления измеряли прочность связи выдергиванием нити (по типу Н-метода). Широкое распространение получил метод многократного изгиба цилиндрического образца, по оси которого проходит кордная нить, выдергиваемая после утомления. Согласна другим методикам [1, 90] цилиндрические образцы с кордной нитью, расположенной по диаметру среднего сечения, подвергаются многократному сжатию до отслоения и выдергивания нити (рис. V.16). Динамическое разнашивание резины не наблюдается в гантелевидных образцах, укрепляемых в специальных держателях [1, 112], так как образцы подвергаются знакопеременным деформациям растяжения-сжатия. [c.227]


    Если требуется сравнить результаты ультразвукового контроля толстых листов с полученными другими способами, в том числе и разрушающими, то в отношении отпечатков по Бауману и серных отпечатков можно сказать (как и в случае контроля поковок), что совпадения не достигается. Дело в том, что закрытая ликвация ультразвуком не выявляется. Однако иногда и результат испытания на ударную вязкость надрезанных образцов противоречит данным ультразвукового контроля образец разрушается с гладким изломом, хотя дефекта в этом месте не было обнаружено. В одном из листов стали, содержащей около 1 % Мп, было установлено, что в зтом случае в листе имелась очень четко вырал<енная строчечная структура, не дававшая эхо-импульсов, хотя поперечная прочность в этом месте была значительно снижена. Тот факт, что там не было 1 зстоя щего расслоения, подтвердился последующей термичегкой обработкой, после которой и на образце для испытаний нэ у, ,-. р-ный изгиб с надрезом не было обнаружено дефектности. В этой связи следует еще упомянуть о наблюдении на одном из толстых листоа из стали с 13 % Мп. При первом ультразвуковом контроле в еще горячем состоянии (около 80°С) было замечено лишь немного показаний от дефектов, а после охлаждения их число значительно увеличилось. Здесь речь шла о вновь по- [c.469]

    Катализаторы пиролиза представляют собой сложную систему, основными компонентами которой являются активная масса и носитель. Носитель, обладающ.ий некоторой каталитической активностью, придает катализатору требуемые механические свойства (прочность) и способствует его стабильности. Активный компонент в большинстве предлагаемых катализаторов пиролиза состоит, в основном, из оксидов металлов переменной валентности — ванадия, ниобия, индия, железа и др. Каталитическая активность таких оксидов в процессе пиролиза связана, по-видимому, с изменением их валентности в каталитическом процессе. Так, было показано, что окисленный ванадиевый катализатор пиролиза, содержащий в качестве активного компонента пятивалентный ванадий, обладает (без предварительной активации) низкой активностью и приобретает максимальную активность только после восстановления ванадия водородом (например, водородом, содержащимся в составе продуктов пиролиза) до низшей валентности. Сильновосстановленный образец катализатора, проявляющий высокую активность с первых минут подачи сырья, содержит ванадий, восстановленный, по-видимому, до У0о,5 (одновалентное состояние), обнаруженного на его дифрактограммах. Время, необходимое для восстановления ванадия до активного состояния, зависит от температуры при 300 °С для этого требуется 15 мин, при 750 °С — менее 1 мин. Протекание окислительно-восстановительных реакций в процессе каталитического пиролиза можно предположить и для других катализаторов. [c.10]

    Из рис. 5 следуют три важных замечания. Во-первых, обращает на себя внимание та особенность, что в области температур между —60 и —20° при каждой температуре существуют два реальных значения прочности. Это связано с тем обстоятельством, что именно в этой области температур образцы разрываются, будучи неоднородными. Действительно из рис. 4 видно, что разрывы при этих температурах происходят при таких деформациях образцов, когда переориентация уже началась, но еще не прошла во всей массе образующего образец материала. Поэтому разрыв может происходить как в широкой (исходной) ненереориентировапной части образца, так и в узкой (переориентированной) части . В соответствии с этим имеем для каждой температуры два значения прочности. Следовательно, температурная зависимость прочности ярко иллюстрирует наличие скачкообразного превращения одной модификации полиамида в другую при деформации. [c.299]

    Другая проблема, возникающая при использовании коэффициента К в расчетах, связана с применением его при асимметричных циклах нагружения, т. е. когда учитывается как в среднем, так и в амплитудном переменном напряжении цикла. Наиболее часто используют /(/ только для определения переменной Аг/ компоненты цикла. Но лучше учитывать при расчете как среднего, так и переменного напряжения цикла. Однако при этом необходимо принимать во внимание снижение среднего напряжения при увеличении максимального напряжения цикла выше предела текучести. Возьмем, например, образец в виде бруса из материала с пределом текучести 28 кгс/мм и с надрезом Kf = 3. Образец подвергается циклической нагрузке при растяжении с номинальными напряжениями в интервале О— 14 кгс/мм . По общепринятой терминологии среднее напряжение составляет 7 кгс/мм , а расчетная амплитуда напряжения равна 21 кгс/мм . По рекомендованному методу базовое (исходное) среднее напряжение составит 21 кгс/мм , и его откорректированная в соответствии с выражением (2.3) величина будет равна 7 кгс/мм . Таким образом, текучесть в течение первых нескольких циклов, по всей вероятности, свидетельствует в пользу общепринятой методики расчета компонента среднего напряжения при неучете коэффициента Kf. Например, если предел текучести материала составляет 35 кгс/мм , то откорректированное среднее напряжение будет равно 14 кгс/мм , и в этом случае общепринятая методика дает надежный результат. Предлагаемый выше метод был описан Хейгом [19] в 1929 г. и использовался примерно до 1960 г. он полезен в том случае, когда действительное среднее напряжение входит в оценку усталостной прочности, однако его не следует применять, если используемая для оценки долговечности кривая усталости откорректирована с учетом максимально возможного влияния среднего напряжения (см. рис. 2.11). [c.72]


    Другим примером разнопрочных структур является перекисный вулканизат НК, полученный в одном случае путем обычной вулканизации, а в другом — в результате двухстадийной вулканизации [28], причем после первой стадии неполной вулканизации образец растягивался и в таком состоянии довулканизовывался, т. е. в нем создавалась и закреплялась ориентированная структура. Такой образец оказывается в более благоприятных условиях при развитии ориентационной кристаллизации и обладает большей прочностью, чем обычный перекисный вулканизат, так как в последнем из-за отсутствия лабильных поперечных связей процесс развития дефектов идет более интенсивно, чем ориентационное упрочнение. [c.47]

    Ясно, что только блок-сополимеры типа СБС (полистирол—полибутадиен—полистирол) обеспечивают образование узлов , имитирующих мостичные химические связи вулканизованного каучука. В полимерах типа БСБ, где оба свободных конца эластомерных сегментов макромолекулы не фиксированы связями застеклованного полистирола, проявляются свойства невулканизо-ванного каучука, обладающего, как известно, малой разрывной прочностью, низким модулем и невысоким относительным удлинением при разрыве. Для иллюстрации приведем данные [33] о механических свойствах двух блок-сополимеров одного — типа СБС (образец I), состоящего из двух сегментов полистирола с молекулярной массой каждого 10-10 , и одного сегмента полибутадиена с молекулярной массой 52-10 (общая масса 72-103), другого — типа БСБ (образец И), состоящего из двух сегментов полибутадиена с молекулярной массой 28-10 и промежуточного сегмента полистирола с молекулярной массой 20,5-10 [у обоих сравниваемых образцов суммарная молекулярная масса (72-10 и 7,65-10 ), а также содержание полистирола (27,5 и 27%) приблизительно одинаковы]  [c.236]

    Самой хорошей проверкой высказанных на основе термодинамического рассмотрения положений было бы вычисление величины какого-нибудь макросвойства образца (модуль, разрывная прочность и др.) исходя из микросвойств составляющих образец цепных молекул и сопоставление полученной расчетной величины с экспериментальными данными. Такая попытка связать упругость образца с упругостью составляющих его молекул была предпринята в 1934—1 6 гг. независимо друг от друга Куном и Марком с Гутом [61. Однако, прежде чем подойти к непосредственному изложению полученных ими результатов, следует немного коснуться основных положений статистики применительно к длинной гибкой макромолекуле. [c.61]


Смотреть страницы где упоминается термин Образцы на прочность связи с другими: [c.95]    [c.206]    [c.80]   
Механические испытания каучука и резины (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Образцы

Связь прочность



© 2024 chem21.info Реклама на сайте