Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролитная коагуляция коллоидных растворов

    Влияние различных факторов на порог коагуляции. Порог коагуляции коллоидных растворов электролитов зависит от многих факторов, влияние которых подчиняется ряду закономерностей, называемых правилами электролитной коагуляции. [c.346]

    Электролитная коагуляция коллоидных растворов [c.242]

    Природная глина является продуктом коагуляции, проходящей в геологическом масштабе. В глинистых суспензиях коагуляция в различных ее формах также является доминирующим состоянием. Соответственно все процессы приготовления, обработки и применения буровых растворов направлены по пути ослабления коагуляции (пептизация и разбавление), ее сдерживания или предотвращения (стабилизация, коллоидная защита), регулирования (ингибирование) или усиления (электролитная, температурная агрессия, концентрационное загущение). Эти изменения смещают равновесие в сторону усиления или ослабления связей между глинистыми агрегатами, влияют на их лиофильность и дисперсность. В результате устанавливаются промежуточные равновесные состояния, которые и определяют технологические показатели буровых растворов. Таким образом, все протекающие в них изменения являются различными формами единого коагуляционного процесса, управляемого общими. закономерностями системы глина — вода, в которой этот процесс реализуется, и его физико-химическим механизмом. Проявлением этого механизма является модифицирование твердой фазы путем поверхностных реакций замещения и присоединения, включающих в себя гидратацию, ионный обмен и необменные реакции. Такого рода модифицирование, осуществляемое обработкой химическими реагентами, определяет уровень лиофильности системы, сдвигая его в должном направлении. При этом получают развитие факторы, влияющие на дисперсность, — набухание, пептизация или, наоборот, структурообразование и агрегирование. [c.58]


    Явления коагуляции и пептизации связаны с разрушением и образованием двойного электрического слоя (и с гидратацией коллоидных частиц). Двойной электрический слон возникает на поверхности раздела любых фаз, в частности дисперсная частица— раствор, и наиболее четко он обнаруживается при условии ионной (или металлической) структуры вещества дисперсной фазы и электролитной природы дисперсионной среды. Этот слой состоит из потенциалопределяющих ионов, фиксированных на поверхности твердой фазы (дисперсной частицы), и противоположно заряженных ионов — противоионов, находящихся в жидкой фазе. Вследствие наличия двойного электрического слоя между твердой и жидкой фазами возникает разность потенциалов — поверхностный потенциал <р (рис. 3.31). [c.148]

    Высокая устойчивость растворов ВМС проявляется и в том, что они не подвергаются электролитной коагуляции. Правда, из водных растворов их можно выделить — осадить, введя электролит но это нельзя отождествлять с коагуляцией, так как природа явлений здесь совсем иная. Коагуляцию коллоидных растворов можно вызвать слабыми растворами электролитов, и к ней применимо правило Шульце — Гарди. Выделение же из растворов полимеров достигается введением большого количества электролита и объясняется уменьшением растворимости высокомолекулярного вещества в его присутствии. Подобные явления происходят и в растворах низкомолекулярных соединений. Например, если ввести в водно-спиртовую смесь поташ, то гомогенный раствор разделяется на два слоя, в одном из которых находятся преимущественно вода и соль, в другом сосредоточена основная масса спирта. Это явление называется высаливанием. По своему высаливающему действию ионы располагаются в лиотропные ряды, например  [c.259]

    Рассмотрим пример электролитной коагуляции коллоидного раствора. [c.151]

    Так выглядит коагуляция золей, обусловленная адсорбцией ионов и созданием двойного электрического слоя на поверхности коллоидных частиц. Их устойчивость в растворе определяется гидратацией ионов и влиянием зарядов поверхности на ориентированную адсорбцию дипольных молекул воды. Эти гидратные слои полностью зависят от ионных взаимодействий и при электролитной коагуляции не препятствуют слипанию частиц. В таких типично гидрофобных золях после достижения пороговых концентраций электролитов наблюдаются явные признаки коагуляции, так как сжатие двойного электрического слоя и соответствующее уменьшение гидратных оболочек позволяет коллоидным частицам сближаться на расстояние, при котором энергия их взаимного притяжения превышает энергию теплового (броуновского) движения. [c.122]


    В процессе сульфатной варки целлюлозы под воздействием реагентов варочного щелока смоляные и жирные кислоты омыляются и в виде натриевых срлей переходят в черный щелок. Образовавшийся раствор представляет собой коллоидную систему, в которой смолистые вещества находятся как в молекулярно-растворенном состоянии, так и в виде мицеллярных агрегатов, т. е. в состоянии коллоидного раствора. Выделение сульфатного мыла из черных щелоков определяется течением процессов высаливания (т. е. электролитной коагуляции мыла из растворов) и отстаивания высолившегося вещества. От того, насколько полно пройдут процессы мицеллообразования, коагуляции и отстаивания мыла, зависит его выход и, в конечном счете, общий объем сбора сырого сульфатного мыла. [c.56]

    При- изучении взаимодействия коллоидных частиц с растворами ВМВ было показано, что флокуляция отличается от обычной электролитной коагуляции и заключается в образовании полимерных мостиков между коллоидными частицами. На основании этих представлений В. Ла Мер разработал современную адсорбционно-мостиковую теорию флокуляции. [c.5]

    В гидрофобных золях прибавление электролита в достаточных количествах вызывает нейтрализацию электрического заряда частиц. Происходит эта нейтрализация таким образом, что ионы противоположного частице заряда из прибавленного электролита замещают противоионы частицы, образуя малодиссо-пиированные или даже нерастворимые соединения со стабилизирующими ионами частицы. Определяющую роль играет в процессе электролитной коагуляции и увеличение ионной силы раствора, приводящее к более плотному обволакиванию заряженной коллоидной частицы электростатически взаимодействующими с нею ионами противоположного знака, т. е. опять-таки к нейтрализации ее заряда. [c.151]

    Аналогичные явления, правда, в несколько иной обстановке, наблюдаются для некоторых коллоидных растворов — гидрозолей Ре,0, А1 з, и др. Эти золи иногда в процессе хранения при неизменной температуре, сохраняя полную прозрачность, утрачивают текучесть и приобретают консистенцию полутвердой массы, которую можно резать ножом на куски, сохраняющие форму. Происходит желатинирование, золь переходит в гель. Образующиеся гели называют лиогелями в отличие от коагелей, возникающих, например, при электролитной коагуляции золей. Коагель возникает в результате разрушения, седиментации дисперсной системы с отделением дисперсной фазы от дисперсионной среды. Образование лиогеля не связано с возникновением новой фазы, это переход свободнодисперсной системы в связнодисперсную. В коагелях содержание диспергированного вещества достигает многих десятков процентов. В лиогелях содержание твердой фазы невелико, определяется концентрацией золя и обычно не превышает нескольких процентов или даже долей процента. Для образования студней требуется некоторая минимальная концентрация раствора или диспергированного вещества — 5,0—0,5% и даже ниже, например желатина 1—2%, агара0,1—0,2%, УгОд, и германата кальция меньше 0,1%. При достаточной концентрации способны застудневать и растворы полуколлоидов. [c.262]

    Коллоидные растворы подвергаются коагуляции при невысокой концентрации электролитов. Можно в значительной степени повысить их устойчивость против электролитной коагуляции, создав дополнительно на поверхности коллоидных частиц адсорбционные слои с повышенными структурно-механическими свойствами. Они могут совершенно предотвратить коагуляцию электролитами. Такая стабилизация золя по отношению к электролитам добавлением незначительного количества раствора высокомолекулярных соединений (желатина, казеинат натрия, яичный альбумин и др.) получила название защиты. Защищенные золи весьма устойчивы к электролитам. Так, коллоидные растворы серебра, защищенные белковыми веществами и используемые как лекарственные препараты (протаргол, колларгол), становятся не только мало чуствительными к электролитам, но могут быть упарены досуха сухой остаток после обработки водой снова переходит в золь. [c.245]


Смотреть страницы где упоминается термин Электролитная коагуляция коллоидных растворов: [c.60]    [c.12]   
Смотреть главы в:

Физическая и коллоидная химия Учебное пособие для вузов -> Электролитная коагуляция коллоидных растворов




ПОИСК





Смотрите так же термины и статьи:

Коагуляция

Коллоидные и коагуляция

Коллоидные растворы коагуляция

Растворы коллоидные



© 2024 chem21.info Реклама на сайте