Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрофобные золи

    Следует иметь в виду, что гидрофобные золи и растворы высокомолекулярных соединений, образующиеся при любом способе приготовления, всегда загрязнены различными примесями, главным образом истинно растворимыми веществами, которые существенно влияют на свойства золей и в первую очередь на их устойчивость. Поэтому для получения коллоидных растворов, обладающих наибольшей устойчивостью, необходимо удалять из золей всевозможные примеси и в первую очередь избыток электролитов, которые образуются при получении коллоидных растворов. На лекции весьма полезно про- [c.147]


    Коагуляция гидрофобных золей электролитами [c.367]

    В процессе образования гидрофобного золя рост ядра в той или иной стадии может быть приостановлен созданием так называемого адсорбционного слоя из ионов стабилизатора. Ионная сфера вокруг ядра коллоидной мицеллы состоит из двух слоев (или двух сфер) — адсорбционного и диффузного. Адсорбционный слой слагается из слоя потенциалопределяющих ионов, адсорбированных на поверхности ядра и сообщающих ему свой заряд, и части противоионов, проникших за плоскость скольжения и наиболее прочно связанных электростатическими силами притяжения. Вместе с ядром эта ионная атмосфера образует как бы отдельный гигантских размеров многозарядный ион — катион или анион, называемый гранулой. Диффузный слой, расположенный за плоскостью скольжения, в отличие от адсорбционного не имеет в дисперсионной фазе резко очерченной границы. Этот слой состоит из противоионов, общее число которых равняется в среднем разности между всем числом потенциалопределяющих ионов и числом противоионов, находящихся в адсорбционном слое. [c.318]

    Помимо электролитов, коагуляция гидрофобных коллоидов может быть вызвана смешиванием в определенных количественных соотношениях с другим гидрофобным золем, гранулы которого имеют противоположный знак. Это явление носит название взаимной [c.369]

    Всякий лиофобный (гидрофобный) золь получается только искусственным путем за счет приложенной извне работы (химической или механической). Именно за счет этой работы золь и характеризуется большим избытком свободной поверхностной энергии, которая, стремясь к уменьшению, обусловливает его агрегативную неустойчивость. Что же касается высокомолекулярных соединений, то их растворы могут образоваться самопроиз-воль но путем неограниченного набухания, переходящего далее в обычное растворение. В результате этих процессов происходит не увеличение, а, наоборот, убыль свободной энергии. [c.175]

    Б. П. Дерягин (1945) разработал теорию устойчивости и коагуляции лиофобных (гидрофобных) золей, согласно которой сольватные (гидратные) оболочки вокруг ядра коллоидных мицелл, обусловленные сольватацией (гидратацией) ионов в диффузном слое, обладают упругими свойствами. Упругие силы жидких сольватных оболочек, препятствующие слипанию частиц, получили, по Б. П. Дерягину, название расклинивающего давления. Это название подчеркивает, что упругие сольватные прослойки между сближенными твердыми поверхностями действуют механически, как бы расклинивая поверхности. [c.325]


    Строение мицелл в коллоидной химии принято выражат1> особыми мицеллярными формулами. Так, в обобщенном и упрощенном виде строение любой мицеллы гидрофобного золя можно передать следующими формулами т[ядро] К+(/г— ) А +хА — положительно заряженная мицелла т[ядро]дгА (я—х)К+ хК+ — отрицательно заряженная мицелла, где К+ — катионы А — анионы п — число потенциалопределяющих ионов х — число ионов, находящихся в диффузном слое т — число нейтральных атомов или молекул в ядре. [c.320]

    Опыт 114. Демонстрация защитного действия ВМС на гидрофобные золи [c.235]

    С целью определения возможности применения для конкретной системы теории коагуляции гидрофобных золей [1, 2, 3, 4, 5] были проведены лабораторные исследования. Оценка коагулирующей способности электролитов производилась по методике Ю. М. Глазмана [3]. [c.110]

    Глазман Ю. М. О природе явления привыкания при коагуляции гидрофобных золей электролитами. Коллоидный журнал . 1953, т. 15, № 6. [c.113]

    Наиболее важным и наиболее изученным фактором коагуляции гидрофобных золей является действие электролитов. Практически все электролиты, если взять их в достаточном количестве, способны вызвать коагуляцию коллоидных растворов. Однако концентрации различных электролитов по своему коагулирующему действию довольно резко различаются между собой (опыт 108, 109). [c.226]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически равновесном состоянии, аналогично истинным растворам обладают абсолютной агрегативной устойчивостью. Высокая устойчивость коллоидных растворов ВМС определяется, в основном, двумя факторами — наличием на поверхности частиц двух оболочек электрической и сольватной (гидратной). Поэтому для коагуляции коллоидов высокомолекулярных соединений необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Выделение ВМС из растворов по своему характеру отличается от коагуляции типичных гидрофобных коллоидов. Так. если для гидрофобных золей достаточно незначительных добавок электролитов, чтобы вызвать коагуляцию, то для высокомолекулярных веществ этого недостаточно. Для выделения дисперсной фазы полимеров необходимы высокие (вплоть до насыщенных растворов) концентрации электролитов. Явление выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания (опыт 110,113). [c.227]

    Типичные гидрофобные золи легко коагулируют при прибавлении к ним малых количеств электролитов (миллиграммы на 1 л). Растворы ВМС, наоборот, обладают большой устойчивостью против коагулирующего дейст-Еия электролитов. Многочисленными исследованиями было установлено, что растворы ВМС, будучи прибавлены к гидрофобным золям, сообщают им повышенную устойчивость к электролитам. Подобное явление получило название защитного действия, а сами вещества, повышающие устойчивость гидрофобных золей, получили название защитных (опыт 114). [c.228]

    Исследования показали, что степень защитного действия растворов ВМС зависит как от природы растворенного полимера, так и от природы защищаемого гидрофобного золя. В качестве количественной меры защитного действия растворов ВМС применяют золотое, рубиновое и железное число (опыт 115). [c.228]

    Проведение опыта. В две пробирки наливают примерно по 10 мл гидрофобного золя мастики или золя серы, а в две другие — по 10 мл золя альбумина или гемоглобина. Затем берут одну пробирку с гидрофобным золем, а другую —с гидрофильным, и в каждую из них добавляют по 5—6 капель насыщенного раствора сульфата аммония. Пробирки попарно вставляют в проекционный фонарь и проектируют их на экране. Наблюдают, какие произошли изменения в каждом из золей при добавлении электролита. [c.231]

    Результат опыта. Прибавление- насыщенного раствора сульфата аммония к гидрофобному золю немедленно вызывает его коагуляцию — в пробирке наблюдается образование и оседание осадка дисперсной фазы золя. Прибавление к раствору альбумина или гемоглобина насыщенного раствора сульфата аммония не вызывает коагуляции — обе пробирки остаются без изменений. Следовательно, гидрофильные коллоиды обладают большей устойчивостью к электролитной коагуляции. [c.231]

    Вязкость гидрофобных золей [c.322]

    Всякий лиофобный (гидрофобный) золь получается только искусственным путем за счет приложенной извне работы (химической или механической). Именно за счет этой работы золь и обладает большим избытком свободной поверхностной энергии, [c.328]

    Наиболее важным и наиболее изученным фактором коагуляции гидрофобных золей является действие электролитов. Практически все электролиты, взятые в достаточном количестве, способны вызывать коагуляцию коллоидных растворов. В частности, гидрофобные золи, частицы которых имеют двойные электрические слои, коагулируют от прибавления сравнительно небольших количеств электролитов. Коагулирующее действие различных электролитов довольно сильно зависит от их концентрации. [c.367]


    Мицелла гидрофобного золя является электронейтральной. Формулу мицеллы ионостабилизированного золя гидроксида железа можно записать следующим образом  [c.163]

    Как показывает опыт, коагуляции гидрофобных золей можно вызвать н при помощи смеси электролитов. При этом возможны три случая 1) коагулирующее действие смешиваемых электролитов суммируется 2) коагулирующее действие смеси электролитов меньше, чем в случае чистых электролитов. Это явление носит название [c.368]

    Как правило, защитным действием обладают высокомолекулярные вещества лиофильной природы (т. е. поверхностно-активные). Ниже приведены важнейшие защитные вещества и указано, какие гидрофобные золи хорошо защищаются этими веществами. [c.385]

    Исследования, проведенные в последние годы с применением электронного микроскопа, показали, что в случае нитевидных молекул ВМС одна макромолекула высокополимера адсорбционно взаимодействует с несколькими мицеллами (рис. 121,6). При этом мицеллы гидрофобного золя связываются в своеобразные агрегаты в виде структурных сеток, вследствие чего лишаются возможности сближаться друг с другом и коагулировать. [c.387]

    Механизм защитного действия достаточно хороига объясняется теорией Зигмонди, в основе которой лежит представление об адсорбционном взаимодействии между частицами защищаемого и защищающего золей. Более крупная частица гидрофобного золя адсорбирует на своей поверхности более мелкие макромолекулы ВМС с их сольватными (гидратными) оболочками, и в результате этого она приобретает лиофильные (гидрофильные) свойства. В данном случае коллоидные мицеллы необратимого гидрофобного золя предохраняются от непосредственного соприкосновения друг с другом, а следовательно, и от агрегации как в случае действия на такой золь электролита-коагулятора, так и в случае концентрирования золя. На рис. 121, а показана схема подобного защитного действия. Таким образом, высокомолекулярные соединения выступают в роли стабилизатора лиофобных (гидрофобных) золей, То, что именно на адсорбции основано защитное действие, подтверждается не только избирательным характером взаимодействия между макромолекулами ВМС и мицеллами, но и тем, что степень защитного действия увеличивается с концентрацией защищающего раствора ВМС только до полного адсорбционного насыщения поверхности мицелл защищаемого золя. [c.387]

    Результат опыта. С увеличением концентрации раствора олеата натрия скорость падения шарика сильно уменьшается, следовательно, вязкость растворов сильно увеличивается с коццентрацией, что весьма характерно для высокомолекулярных соединений. Напомним, что вязкость гидрофобных золей очень мало изменяется с изменением концентрации и практически равна вязкости дисперсионной среды. [c.193]

    Исследовати показа.лп, что относительная вязкость гидрофобных золей находится в прямо] зависимости от величины их элект-рок. и нети чес ко го иогенциала. [c.323]

    Часто продукт коагуляции гидрофобных золей — осадок, илн ко-агель, — может быть вновь переведен во взвешенное состояние путем обработки его определенным электролитом. Так, скоагулиро-ванный золь гидроксида железа можно вновь вернуть в исходное состояние, если осадок Ре(ОН)з обработать водным раствором хлорида железа. Процесс перехода осадка во взвешенное состояние-под влиянием внешних факторов получил название пептизации. Этот процесс противоположен коагуляции, потому его называют также декоагуляцией. [c.375]

    Как и коагуляция, пептизация гидрофобных золей не затрагивает глубинных масс коллоидного ядра. Эти процессы протекают -в тончайших слоях на поверхности раздела фаз, поэтому для пептизации, как, впрочем, и для коагуляции, требуются незначительные количестиа электролитов по сравнению с количеством осадка, переводимого в состояние золя. Так, если брать одинаковое ко,личество коагулянта и пептизировать его различным количеством пептизатора, то при малых количествах происходит лишь его адсорб.ция без растворения осадка (кривая ОА, рис. 116), при дальнейшем. повышении концентрации пептизатора происходит и увеличение растворимости (кривая АВ). Если и дальше увеличивать количество пептизатора, растворимость, быстро увеличиваясь, достигает определенного предела и уже не зависит от количества пептизатора (кривые ВС и СО). При большом избытке пептизатора может наступить п.оагуляция (кривая ОЕ). Рассмотренная нами кривая ОЕ на рис. 116 дает типичную картину адсорбционной пептизации. [c.376]

    Явлеиие выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания. К высаливанию неприменимо правило Шульце—Гарди, поэтому нельзя отождествлять высаливание с явлением обычной электролитной коагуляции. Явление в . с 1ливапия высокомолекулярных веществ в отличие от гидрофобных золей не связано с дзета-потенциалом коллоидных мицелл и заключается в нарушении сольватной (гидратной) связи между макромолекулами полимера и растворителем, т. е., иначе, в понижении растворимости полимера. При введении соли часть молекул растворителя, которая была в сольватной связи с макро.молекулами ВМС, сольватирует молекулы введенной соли. Чем больше будет введено соли, тем большее число молекул растворителя покинет макромолекулы полимера и сольватирует соль. Таким образом, высаливающее действие СОЛИ заключается в ее собственной сольватации (гидратации) за счет десольватации (дегидратации) молекул высокомолекулярных веществ. [c.381]

    Типичные гидрофобные золи легко коагулируют при ирибавле-НИИ к ним малых количеств электролитов (миллиграммы на литр). Раствор1л высокомолекулярных соединений, наоборот, обладают большой устойчивостью против коагулирующего действия электролитов. Многочисленными исследованиями было установлено, что растворы ВМС, будучи прибавлены к гидрофобным золям, сообщают им повышенную устойчивость к электролитам. Так, если к золю золота (гидрофобный коллоид) прибавить небольшое количество желатина, гидрозоль золота становится более устойчивым. При прибавлении электролитов даже в количествах, значительно превосходящих порог коагуляции, а также при длительном стоянии этот золь не испытывает практически никаких изменений. Если этот золь вы парит .. то при смешении сухого препарата с водой вновь образуется коллоидный раствор. Таким образом, типичный гидрофобный золь золота при прибавлении к нему желатина как бы приобрел свойства гидрофильного золя и стал обратимым. Подобное явление получило название защитного действия или просто защиты, а сами вещества, повышающие устойчивость гидрофобных золей, получили название защитных. [c.385]

    Исследования показали, что степень защитного действия раство-ро,в ВМС зависит от природы растворенного полимера и от природы защищаемого гидрофобного золя. Количественной мерой защитного действия растворов ВМС являются золотое, рубиновое и железное число. Золотое число — это минимальное число миллиграммов защии аюш,его высокополимера, достаточное, чтобы воспрепятствовать перемене красного цвета в фиолетовый у 10 мл гидрозоля золота (концентрации 6-10 г/л, полученного по методу Зигмонди) от коагулирующего действия 1 мл раствора хлорида натрия с массовой концентрацией 100 г/л. [c.386]

    В некоторых случаях прибавление весьма малых количеств вы-сокопол 1мера к гидрофобному золю приводит к прямо противоположному результату устойчивость золя резко понижается. Это явление называется сенсибилизацией или астабилизацией коллоидного раствора. Согласно теории П. Н. Пескова и Л. Д. Ландау астаби-лизация происходит тогда, когда защищающий высокополимер добавляют к гидрофобному золю в таких ничтожно малых количествах, которые ниже предельного порога его защитного действия, т. е. ниже его золотого или рубинового защитного числа. Иными словами, астабилизация наступает, когда частиц высокополимера не хватает иа. покрытие и защиту всей поверхности коллоидных частиц [c.387]


Смотреть страницы где упоминается термин Гидрофобные золи: [c.32]    [c.113]    [c.74]    [c.227]    [c.318]    [c.322]    [c.323]    [c.323]    [c.388]   
Смотреть главы в:

Физическая биохимия -> Гидрофобные золи


Учение о коллоидах Издание 3 (1948) -- [ c.308 ]

Краткий курс коллойдной химии (1958) -- [ c.11 ]

Физическая и коллоидная химия Учебное пособие для вузов (1976) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Золь

Мер золит

золы



© 2025 chem21.info Реклама на сайте