Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства и модификация ацетатных волокон

    Известно большое число эфиров целлюлозы и среди них — смешанные эфиры, например ацетобутираты целлюлозы, однако наиболее подходящими для формования волокна являются ацетаты целлюлозы. Были также получены и переработаны в волокно эфиры целлюлозы и муравьиной кислоты —формиаты целлюлозы. Если для модификации свойств ацетатного волокна и тканей необходимо ввести в состав волокна остатки других кислот, это лучше всего может быть достигнуто путем обработки волокна растворами хлорангидридов кислот в инертных растворителях, т. е. растворяющих хлорангидриды и не растворяющих ацетилцеллюлозу. Такой процесс наиболее целесообразно проводить в присутствии органических оснований, например пиридина, который связывает хлористый водород, образующийся при взаимодействии хлорангидридов со свободными гидроксильными группами эфира [c.173]


    Первый промышленный способ получения искусственного волокна Шар-донне был основан на способности нитрата целлюлозы, содержащего от 10,5 до 12,5% азота, растворяться в смеси эфира и спирта. Производство вискозного и ацетатного волокна является другим примером модификации целлюлозы с целью придания ей растворимости в обычных растворителях. В то же время производство медноаммиачного шелка основано на открытии нового специфического растворителя для целлюлозы. Производство волокон из хлорированного поливинилхлорида стало развиваться после того, как было установлено, что частичное хлорирование поливинилхлорида придает полимеру способность растворяться в ацетоне [7]. Способность синтетических полимеров к растворению можно предусмотреть при их синтезе, добиваясь необходимых свойств путем подбора соответствующих компонентов [8]. Вообще сополимеры более растворимы, чем гомополимеры. Так, производство виньона было основано на том, что полимер (винилит), содержащий 90 /о винилхлорида и 10% винилацетата, растворим в ацетоне [9]. [c.304]

    Искусственные волокна (вискозные, ацетатные и др.). Регулирование структуры и свойств гидратцеллюлозных волокон при прядении из растворов путем образования на волокне адсорбционных слоев П.4В, изменяющих скорость диффузии раствора из осадительной ванны в регенерируемое волокно повышение производительности процесса перемотки волокон благодаря уменьшению трения смягчение волокон вследствие модификации их поверхности при авиваже (мы-ловке).— Оксиэтилированные высшие амины и амиды (типа Синтамид-5 ) ЧАС блоксополимеры окисей этилена и окиси пропилена на основе этиленгликоля (проксанолы) и этилендиамина (проксамины) эфиры многоатомных спиртов и кислот оксиэтилированные высшие спирты и кислоты. [c.327]

    Улучшение качества ацетатных волокон. Наиболее целесообразным направлением исследований в этой области является структурная и химическая модификация свойств волокна. Прежде всего необходимо повысить устойчивость диацетатного и триацетатного волокон к истиранию. [c.15]

    Методы регулирования надмолекулярной структуры ацетатных волокон, аналогичные методам модификации вискозных волокон, до настоящего времени не разработаны. Однако введение малых добавок в состав прядильного раствора или волокна на различных стадиях технологического процесса может, по-видимому, существенно изменять структуру волокна и тем самым и его свойства. Исследования в этом направлении представляют существенный интерес. [c.506]


    Наиболее перспективными являются физические, химические и термо-механические методы модификации полимеров и волокон, дающие возможность на основе доступного сырья (мономеров и полимеров) получать по существу новые типы волокон. Регулирование тонкой физической структуры в процессе переработки полимера привело к созданию высокопрочного вискозного корда, полинозного волокна, высокопрочного медноаммиачного и ацетатного волокон. Структура, создаваемая в процессе формования, оказывает большое влияние также на свойства синтетических волокон (полипропиленовое, капроновое и др.). Получение волокон из смесей или сплавов полимеров относится к одному из перспективных физических методов модификации свойств волокон. [c.9]

    С ПОМОЩЬЮ химической модификации полимеров получают материалы с необходимыми для сиециальных целей свойствами, например, аморфный иоливинилацетат путем омыления превращают в частично кристаллизующийся поливиниловый спирт с водородными связями между гидроксильными группами макромолекул. Из такого полимера могут быть получены волокна, которые с успехом используют в текстильной и некоторых других областях иромьнпленности. Замена ацетатных групп иа гидроксильные ириводит, как известно, к существенным изменениям механических свойств иолимера, которые интенсивно изучаются различными физическими методами. [c.117]

    В некоторых случаях применяют химическую обработку с целью модификации свойств волокна. Примерами такой модификации являются обработка волокна из — поливинилового спирта растворами формальдегида для придания ераство-римости, омыление ацетатных групп (волокно фортизан) для повыигения прочности и химической стойкости и частичный гидролиз полиакрилоиитрила с целью улучшения окрашиваемости волокон. [c.322]

    Комплекс свойств волокна еще более заметно повышается при применении для формования смеси ацетата целлюлозы и полиуретанов [44]. Однако этот метод модификации свойств ацетатных волокон сможет волучить-только ограниченное применение из-за — [c.507]

    Этот способ давно уже применяется в промышленности для модификации каучуков и пластмасс. В ограниченных масштабах он применяется и в промышленности химических волокон, например при получении водонерастворимых поливинилспиртовых волокон, для чего све-жесформО Ванные нити подвергают химической сшивке формальдегидом. Сюда же можно отнести и волокно фортизан, получаемое путем омыления ацетатных нитей. Применение химических реакций для модификации полиамидов пока не вышло за рамки лабораторных исследований. Это обусловлено, по-видимому, большими трудностями проведения химических реакций на гетероцепных полимерах. Мономерные звенья в гетероцепных полимерах связаны группами, легко вступающими в реакции, вызывающие разрыв макроцепей (гидролиз, ацидолиз, аминолиз, переамидирование и т. д.), что ограничивает выбор таких превращений, которые обеспечивали бы неизменность молекулярной массы, а следовательно, и основных физико-механических свойств волокон. [c.220]


Смотреть главы в:

Основы химии и технологии химических волокон Том 1 -> Свойства и модификация ацетатных волокон




ПОИСК





Смотрите так же термины и статьи:

Ацетатное волокно

Ацетатные волокна волокон

Ацетатные волокна модификация

Модификация свойств



© 2025 chem21.info Реклама на сайте