Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Б а г о ц к и й. Электродные процессы и новых электрохимических источниках тока

    Существует тесная взаимосвязь между теоретической электрохимией и такими разделами прикладной электрохимии, как гальванотехника, защита от коррозии, создание новых электрохимических источников тока и хемотронных устройств. Роль электрохимической кинетики для решения прикладных задач в этих областях возрастает с каждым годом. Вместе с тем потребности практики являются мощным стимулом для дальнейшего развития теоретических направлений. Так, загрязнение окружающей среды коррозионно-активными агентами, широкое использование новых металлов и сплавов, зачастую достаточно дорогих, в современных технике и строительстве все более остро ставят проблему защиты металлических конструкций от коррозии. Это способствует постановке новых задач при теоретическом исследовании коррозии и пассивности металлов. Значительный интерес к явлениям адсорбции и кинетике электродных процессов на платиновых металлах был вызван в первую очередь практическими работами по созданию топливных элементов. [c.390]


    В. С. Багоцкий, Электродные процессы в новых электрохимических источниках тока, Труды четвертого совещания по электрохимии, изд. АН СССР, 1959. [c.344]

    ЭЛЕКТРОДНЫЕ ПРОЦЕССЫ Б НОВЫХ ЭЛЕКТРОХИМИЧЕСКИХ ИСТОЧНИКАХ ТОКА [c.737]

    Электродные процессы а новых электрохимических источниках тока 739 [c.739]

    Электродные процессы е новых электрохимических источниках тока 741 [c.741]

    Электродные процессы в новых электрохимических источниках тока 743 [c.743]

    На пути широкого использования электрохимических методов в современном производстве стоит проблема интенсификации электродных процессов. С одной стороны, этот вопрос решается на основе достижений диффузионной кинетики. Так, пористые электроды могут быть использованы не только для оптимизации процессов в химических источниках тока, но и при проведении электросинтеза в техническом масштабе. В этой связи представляют интерес так называемые суспензионные и псевдоожиженные электроды — взвеси частиц электродного материала в растворе. При контакте с токоотводящим электродом эти частицы передают ему свой заряд. Электродные процессы протекают по границе каждой из частиц с раствором, что снижает диффузионные ограничения и позволяет сосредоточить в малом объеме большую поверхность для протекания реакции. С другой стороны, интенсификация электродных процессов связана с поисками новых электродных материалов, удовлетворяющих одновременно требованиям высокой активности, селективности, химической устойчивости и экономии. [c.391]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]


    Взаимосвязь между кинетикой электродных процессов и работой химических источников тока обусловлена тем, что ток, который можно получить от химического источника, определяется скоростями соответствующих электродных реакций. Поэтому создание новых источников тока зависит от решения вопросов электрохимической кинетики. Непосредственная связь существует между кинетикой электродных процессов и размерной обработкой металлов, а также между электрохимической кинетикой и конструированием хемотронных устройств. [c.14]

    В книге рассмотрены свойства и методы изучения заряженных межфазных границ. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к поверхности электрода. Показана роль явлений массопереноса при конструировании хемотронных приборов и новых источников тока. Обсуждены закономерности перехода заряженных частиц через границу электрод/раствор. Излагаются физические основы современной квантовомеханической теории элементарного акта электрохимической реакции, особенности химических стадий в электродном процессе, механизм электрокристаллизации, многостадийные и параллельные процессы, роль явлений пассивности и адсорбции органических веществ в электрохимической кинетике, [c.2]

    Взаимосвязь между кинетикой электродных процессов и работой химических источников тока обусловлена тем, что ток, который можно получить от химического источника, определяется скоростями соответствующих электродных реакций. Поэтому создание новых источников тока оказывается вопросом электрохимической кинетики. [c.14]

    Создание целого ряда источников тока, в частности электрохимических генераторов на углеводородном горючем, непосредственно упирается в необходимость увеличения скоростей соответствующих электродных процессов. Поэтому одним из важных направлений современных электрохимических исследований в области топливных элементов является изыскание новых эффективных и малодефицитных катализаторов. [c.227]

    В соответствующих частях моего доклада я уже упоминал о значении, которое имели исследования по механизму электроосаждения и по теории коррозионных процессов для решения прикладных попросов в этих областях. К этим двум разделам прикладной электрохимии можно добавить еще и другие, например, область химических источников тохса. Как цри улучшении существующих, так тг при создании новых источников тока находили себе применение теоретические положения, которые я высказывал в сегодняшнем докладе. В целом необходимо признать, однако, что применение теории электродных нроцессов к решению прикладных задач до сих пор още было недостаточным, что я в первую очередь отношу и к ряду своих работ. Одна из причин этого недостатка, которая только теперь устраняется, это отсутствие пособий но электрохимической кинетике, доступных достаточно широкому кругу читателей. [c.43]

    Токообразующие процессы, лежащие в основе уравнения (УПI-18), отвечают так называемой теории двойной сульфатации Гладстона и Трайба. По этой теории оба электрода при разряде переходят в сульфат свинца. Когда они становятся одинаковыми по своему химическому составу, т. е. оба превращаются в электроды второго рода SOI /PbSOi, Pb, э.д.с. цепи падает практически до нуля. Продукт электродных реакций — твердый сульфат свинца — обладает способностью удерживаться на поверхности электродов. Поэтому при прохождении тока в обратном направлении (если подключен какой-либо внешний источник постоянного тока) реакции идут справа налево, в сторону регенерации исходных токообразующих веществ (металлического свинца и двуокиси свинца). После регенерации электрохимическая цепь снова может стать источником электрической энергии, т. е. Способна работать как электрохимический аккумулятор электрической энергии. Такие циклы разряда и заряда могут повторяться большое число раз, и после каждого нового заряда восстанавливается исходное состояние системы. Поэтому аккумуляторы называют иногда также вторичными элементами в отличие от первичных (например, элемент Вестона), в которых возможно лишь однократное использование энергии протекающих в них химических реакций. [c.185]


Смотреть страницы где упоминается термин Б а г о ц к и й. Электродные процессы и новых электрохимических источниках тока: [c.381]    [c.3]   
Смотреть главы в:

Труды 4-го совещания по электрохимии -> Б а г о ц к и й. Электродные процессы и новых электрохимических источниках тока




ПОИСК





Смотрите так же термины и статьи:

Источники тока

Процесс электродные

Процесс электрохимический

Току нова

Электродный процесс Процесс электродный

Электрохимическая электродная



© 2025 chem21.info Реклама на сайте