Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переход частиц через границу фаз

    Известно, что возникновение вольта-потенциала между двумя металлами в вакууме связано с образованием ионов при электронной эмиссии из металлов. Более того, явление электронной эмиссии обусловливает экспериментальную возможность определения величины вольта-потенциалов. В 1916 г. И. Лангмюр обратил внимание на соответствие между рядом металлов по работам выхода электронов, т. е. рядом Вольта, и электрохимическим рядом напряжения. Действительно, наиболее отрицательные потенциалы наблюдаются у щелочных металлов, имеющих наименьшую работу выхода электронов. Однако это совпадение только качественное, так как при этом не учитывается зависимость потенциалов электродов от концентрации ионов. Следует подчеркнуть, что нельзя измерить разность электрических потенциалов точек, расположенных в различных фазах. Можно измерить только разность потенциалов точек, лежащих в одной фазе, так как переход заряженной частицы через границу фаз сопровождается работой, равной разности химических потенциалов веществ в двух фазах. Разность электрических потенциалов может быть измерена только между точками, лежащими в одной фазе, потому что при этом разность химических потенциалов равна нулю. Так, разность потенциалов цепи всегда измеряют у двух одинаковых металлических проводников. [c.382]


    Сумма a -Ь p = 3, что подтверждает правильность опытных данных, т. е. отсутствие больших искажений коэффициентов наклона, вызванных концентрационной поляризацией и другими факторами, не имеющими отношения к кинетике перехода частиц через границу фаз. [c.43]

    Частица на поверхности раздела фаз. Переход частицы через границу раздела двух жидких сред является важной составной частью процессов сепарации и очистки одной из фаз от взвеси. Помимо перераспределения межфазных избыточных энергий, здесь важны чисто гидродинамические эффекты сопротивления переходу. [c.92]

    Как уже отмечалось, подвижность ионов оксония и гидроксила аномально высока по сравнению с примесными ионами. Перенос этих ионов обусловлен транспортом протона по цепочкам молекул воды, связанных водородными связями. Для объяснения этого процесса предложены коллективный механизм Грот-куса и основанный на рассмотрении перехода частицы через барьер механизм Эйринга. В работе [356] рассмотрен механизм переноса протона в водных системах, связанный с коллективным возбуждением солитонного типа. Этот механизм в значительной степени зависит от стабильности проводящей протон цепочки молекул воды. Выполненный анализ [349, 350] показывает, что в приповерхностной области более прочные водородные связи образуются вдоль направлений, параллельных границе. Поэтому можно ожидать, что вклад транспорта протонов в поверхностную проводимость водных систем будет существенным. [c.132]

    Переход заряженных частиц через границу раздела фаз сопровождается образованием на этой границе двойного электрического слоя. [c.473]

    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —М1 (точки 1—2) М1 —Мц (точки [c.469]

    Рассмотрим закономерности электрохимических процессов, при протекании которых нарушается электродное равновесие в результате медленного перехода заряженных частиц через границу между электродом и раствором. В то время как стадии подвода и отвода реагирующих веществ не относятся к специфически электрохимическим стадиям, поскольку они характерны для любого гетерогенного процесса, переход заряженных частиц (электронов или ионов) через границу раздела фаз представляет собой чисто электрохимическое явление. [c.229]


    Существенной особенностью стадии разряда — ионизации является, то, что скорость перехода заряженной частицы через границу раздела зависит от строения двойного электрического слоя. С физической точки зрения эта зависимость обусловлена двумя факторами 1) изменением энергии активации, которая определяется скачком потенциала в плотной части двойного слоя 2) изменением концентрации реагирующего вещества в двойном электрическом слое. Как следует из общего уравнения поляризационной кривой [см. формулы (48.1) и [c.251]

    Торможение, связанное с переходом заряженных частиц через границу электрод — раствор электролита или обратно, получило название перенапряжения перехода (заряда), конкретнее — замедленного разряда или замедленной ионизации. Его принято обозначать буквой т). Такой переход весьма часто сопровождается предшествующими либо последующими за разрядом (ионизацией) химическими реакциями. Подобного рода торможения называют перенапряжением химической реакции. [c.19]

    В книге рассмотрены свойства и методы изучения заряженных межфазных границ. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к поверхности электрода. Показана роль явлений массопереноса при конструировании хемотронных приборов и новых источников тока. Обсуждены закономерности перехода заряженных частиц через границу электрод/раствор. Излагаются физические основы современной квантовомеханической теории элементарного акта электрохимической реакции, особенности химических стадий в электродном процессе, механизм электрокристаллизации, многостадийные и параллельные процессы, роль явлений пассивности и адсорбции органических веществ в электрохимической кинетике, [c.2]

    Количественное рассмотрение процесса перехода заряженных частиц через границу металл/раствор приводит к следующим основным уравнениям теории замедленного разряда  [c.216]

    Одним из основных объектов исследования в электрохимической кинетике является стадия перехода заряженных частиц через границу раздела фаз — стадия разряда-ионизации. Поскольку электрохимические реакции представляют собой гетерогенные процессы, то неотъемлемыми их стадиями служат подвод реагирующих частиц к границе раздела фаз и отвод продуктов реакции. Поэтому изучение закономерностей этих стадий также составляет предмет электрохимической кинетики. Соответствующий раздел кинетики электродных процессов называют диффузионной кинетикой или электрохимической макрокинетикой. Электродные процессы часто включают химические стадии, протекающие в объеме раствора или на поверхности электрода, стадии образования новой фазы, поверхностной диффузии и др. В общем случае закономерности электрохимической реакции [c.6]

    Рассмотрим закономерности электрохимических процессов, при протекании которых нарушается электродное равновесие Б результате медленного перехода заряженных частиц через границу между электродом и раствором. [c.243]

    Стадия массопереноса присуща любым гетерогенным процессам. В то же время стадия перехода заряженных частиц (электронов или ионов) через границу электрод — раствор (стадия разряда — ионизации) является специфически электрохимической стадией. В настоящее время доказано, что стадия разряда — ионизации любого электродного процесса протекает с конечной скоростью. Теория, описывающая кинетические закономерности переноса заряженных частиц через границу раздела фаз, называется теорией замедленного разряда. [c.184]

    Причины медленного протекания стадии разряда — ионизации связаны с квантово-механической природой перехода заряженных частиц через границу раздела электрод/раствор. В самом деле, согласно принципу Франка — Кондона, безызлучательный процесс перехода электрона с металла на частицу Ох в реакции (А) или обратно с частицы Red на металл возможен лишь при условии, если полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Для реализации этого условия необходимо изменить ориентацию диполей растворителя вблизи реагирующей частицы, что требует затраты определенной энергии активации. Кроме того, вероятность элементарного акта разряда—ионизации при выполнении принципа Франка—Кондона в общем случае не равна единице она зависит от перекрывания волновых функций начального и конечного состояний, а потому резко убывает с удалением реагирующей частицы от поверхности электрода. В результате принимают (или отдают) электроны только адсорбированные на электроде частицы Ох (или Red). [c.215]

    Переходя к изложению основ теоретической электрохимии, подчеркнем, что в данной книге не рассматриваются общие свойства растворов и методы определения коэффициентов активности, а излагаются только те особенности растворов электролитов, которые обусловлены присутствием заряженных частиц. Далее, условия электрохимического равновесия выводятся обобщением соотношений химической термодинамики на системы, в которых, помимо прочих интенсивных факторов, нужно дополнительно учитывать электрическое поле. Наконец, в качестве основы кинетических закономерностей процесса переноса заряженных частиц через границу раздела фаз используются известные уравнения теории активированного комплекса, в которых анализируется физический смысл энергии активации и концентрации реагирующих веществ в специфических условиях электродной реакции. [c.8]


    На границе раздела металл — раствор в каждой из фаз имеются избыточные, но уравновешивающие друг друга электрические заряды. Последние, распределяясь вблизи поверхности каждой из фаз, образуют электрический конденсатор, и поэтому переменный электрический ток через рассматриваемую границу может проходить благодаря емкостной проводимости, т. е. зарядке, (или разрядке) этого конденсатора (ДЭС). Но в то же время возможен и переход заряженных частиц через границу раздела фаз (разряд ионов или ионизация атомов на электроде), т. е. фарадеевский ток. [c.462]

    Если самой медленной стадией электрохимического процесса является переход заряженных частиц через границу раздела фаз, то имеет место замедленная стадия разряда — ионизация. [c.81]

    Однако в большинстве случаев условия таковы, что лимитирующей стадией процесса переноса вещества через ячейку является его миграция через твердый электролит (при достаточной толщине последнего), а переход частиц через межфазные границы протекает без существенных затруднений. В этих слу- [c.210]

    По определению Ка = J и характеризует вероятность перехода молекул через границу раздела фаз, находящихся в термодинамическом равновесии. При хроматографии макромолекул, когда в качестве неподвижной фазы используют пористые сорбенты (см. стр. 179), граница раздела фаз проходит по сечениям входных отверстий пор на поверхности частиц сорбента [98, 111]. [c.66]

    Протекание коррозионного -процесса связано с переходом частиц через границу фаз, вследствие чего продукты реакции всегда оказываются в иной фазе, нежели исходное вещество. Для количественного определения продуктов это обстоятельство имеет немаловажное значение, поскольку упрощается их отделение от корродирующей основы. Трудности возникают лищь в том случае, когда продукты реакции нерастворимы в данной среде и накапливаются на поверхности испытуемого материала в виде плотно прилегающих слоев. [c.202]

    Однако при соприкосновении металла с раствором ие всегда возможно протекание электрохимических реакций (т. е. переход частиц через границу раздела фаз). Такое состояние возможно, например, на свежей поверхности ртути в растворе фторида калия, з которого удален, кислород и другие окислители. В определенной области потенциалов электрохимические реакции на таком электроде не протекают. Подобные электроды называются идеально поляризуемыми, а область потеицналов, з которой на идеально поляризуемом электроде исключено протекание электрохимических реакций — областью идеальной поляризуемости. Область идеальной поляризуемости иа ртути ограничивается при анодных иотеици.алах реакцией ионизации ртути (2Нд — 2е = Hg ), а при катодных потенциалах — реакцией восстановления ионов калия с образованием амальгамы [К+-г е = К(Н ) ] и составляет примерно 2 В. Для многих электродов, погруженных в раствор, не содержащий собственных нонов, и химически не взаимодействующих с раствором, может быть найдена область, в которой не протекают электрохимические реакции. Например, для медного электрода, погруженного в подкисленный раствор сульфата натрия, при потеит але около 0,1 В происходит растворение меди, а при потенциале примерно —0,5 — выделение водорода таким образом, область идеальной поляризуемости составляет 0,6 В. [c.213]

    Предполагаемый энергетический профиль для калиевого канала показан на рис. XXI.8. Такой профиль соответствует условиям, когда наиболее медленной стадией транспорта является переход частиц через границу мембраны. Форма энергетического профиля предполагает также, что десорбция ионов замедлена относительно адсорбции из раствора. Подробный анализ модели с учетом указанных предположений показывает, что канал все время находится в заполненном двухчастичном состоянии. Поэтому выход частицы из канала в раствор сопровождается последовательным сдвигом ионов по всему каналу. А так как число ям в канале равно двум, то порядок реакции увеличивается вдвое. В этих условиях формула Уссинга [см. (XIX.2.12)] не соблюдается  [c.125]

    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —Mi (точки 1—2) Mi —Мц (точки 3—4) Мц —раствор L (точки 5-—б) раствор L —Mi (точки 7—8) Mi —вакуум (точки 9—10), где М —металл. Потенциал х. отвечающий работе переноса элементарного положительного заряда из глубины фазы в точку в вакууме, расположенную в непосредственной близости к поверхности фазы, называется поверхностным. В рассматриваемой. цепи поверхностные потенциалы возникают между точками / и 2, а также 9 и 10. Разность внутренних потенциалов соседних фаз называется гальвани-пот нциалом. В цепи, представленной на рис. 169, гальвани-потенциалы возникают на границах фаз точки 3—4-, точки 5—6 точки 7—S. Э. д. с. этой цепи представляет собой сумму скачков потенциалов  [c.469]

    Одним из основных объектов исследований в электрохимической кинетике является стадия перехода заряженных частиц через границу раздела фаз — стадия разряда — ионизации. Поскольку электрохимические реакции представляют собой гетерогенные процессы, то неотъ- [c.6]

    Red (х == 0) при этом равновесие, связанное с переходом заряженных частиц через границу электрод/раствор, практически не нарушается. В условиях замедленной стадии разряда—ионизации, наоборот, нарушается равновесие перехода заряженных частиц через фазовую-границу, а градиентом концентрации в диффузионном слое можно пренебречь. [c.215]

    Э. п. гетерогенны и поэтому, как правило, состоят из неск. последоват. стадий. Осн. из них — подвод реагирующих частиц к пов-сти электрода, вхождение их в двойной электрич. слой, непосредств. переход заряж. частиц через границу раздела фаз (стадия разряда — ионизации) и отвод продуктов р-ции от пов-сти электрода. Кроме того, в ходе Э. п. возможны гомог. или гетерог. хим. р-ции, как предшествующие стадии разряда — ионизации, так и следующие за ней, а также разл. стадии, связанные с образованием новой фазы (см. Электрокристаллизация). Подвод реагирующих в-в к пов-сти электрода и отвод их в объем р-ра (стадии массопереноса) м. б. обусловлены диффузией, миграцией ионов в электрич. поле и конвекцией. Наиб, значение имеют стадия разряда — ионизации и диффуз. механизм массопереноса. Скорость Э. п. определяется наиб, медленной из последоват. стадий (т. н. лимитирующей). Исследование механизма и кинетич. закономерностей Э. п.— объект изучения электрохимической кинетики. [c.697]

    В полученных условиях на поверхности разрыва фи-гурируют относительные скорости, причем в общем случае нормальные составляющие скорости частиц не обязательно равны нулю, другими словами, возможен переход частиц через поверхность разрыва 5. Однако в ряде случаев, например, когда 5 служит границей между дисперсной системой и однородной дисперсионной средой, такой переход частиц невозможен, так как из второго условия (1.56) следует, что w— = Q при р+=0. [c.43]

    ТТеренос электрических зарядов в веществе под действием впеш--1-1 него электрического поля характеризуется удельной объемной электропроводностью у. При анализе возможных физических моделей прохождения электрического тока через полимеры, а также при использовании этих материалов важно знать зависимости силы тока I или плотности тока / от времени воздействия т и напряженности Е электрического поля, температуры, состава, строения, размеров и формы материала. Следует отметить, что прохождение электрического тока через вещество связано с развитием таких фундаментальных процессов, как диссоциация и ионизация молекул и атомов, рекомбинация носителей, процесс направленной диффузии заряженных частиц в электрическом поле, передача или переход зарядов через границу раздела двух сред (например, диэлектрик — металл), установление различных видов поляризации вещества. [c.7]

    Электродные реакции гетерогенны и сопровождаются переходами заряженных частиц через границу раздела фаз. Они состоят из отдельных элементарных последовательных, а иногда и параллельных электрохимических и химических стадий, включающих помимо переноса зарядов диффузию исходных веществ и продуктов реакции, их возможную адсорбцию иа поверхности электрода, адсорбцию промежуточных частиц, образование новой фазы и т. д. Под механизмом реакции понимают установление определенной последовательности элементарных стадий, которые составляют суммарную электродную реакцию, т. е. реакцию, в которой четко могут быть определены как исходные вещества, так и конечные продукты реакции.. В большинстве случаев ис.ходные вещества, вступающие в реакцию, известны, и тем не менее доказательство участия какого-либо сорта частиц в реакции представляет известную трудность, так как в растворе нли расплаве исходное вещество может находиться в виде частиц различного состава. Част -цы, непосредственно реагирующие на электроде, могут быть в растворе в ничтолсной концентрации, но непрерывно восполняться в результате быстрой химической реакцни. Аналогично и продукты реакции могут вступать в последующее химическое взаимодействие с компонентами раствора или расплава. Наличие элементарной стадии переноса заряда через двойной электрический слой существенно отличает электрохимические реакции от гетерогенных хнм 1ческнх реакц Й, [c.245]


Смотреть страницы где упоминается термин Переход частиц через границу фаз: [c.216]    [c.3]    [c.145]    [c.398]    [c.398]    [c.145]    [c.174]   
Кинетика образования новой фазы (1986) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте