Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митоз — деление соматической клетки

    IL3. МИТОЗ - ДЕЛЕНИЕ СОМАТИЧЕСКОЙ КЛЕТКИ [c.33]

    Клеточный цикл у растущего организма состоит из двух этапов. Более длинный период-интерфаза, когда клетка синтетически активна и занята воспроизведением своих компонентов. Затем следует короткий период-митоз, интерлюдия, во время которой фактически завершается процесс разделения на две дочерние клетки. Клетки, возникающие в результате ряда митотических делений и образующие целый организм, называют соматическими клетками. [c.10]


    Каждая дочерняя клетка, начинающая свою жизнь после митоза, содержит по две копии каждой хромосомы. Их называют гомологичными. Общее число хромосом в клетке, известное как диплоидный набор, обозначают 2п. Типичная соматическая клетка существует в диплоидном состоянии (кроме того периода, когда она готовится к делению или уже делится). [c.10]

    В интерфазе растущая клетка удваивает свой хромосомный материал. Однако это становится очевидным только в последующем митозе. В митозе каждая хромосома разделяется вдоль по длине, образуя две копии-сестринские хроматиды. В этот момент клетка содержит 4и хромосом, организованных в 2п пар сестринских хроматид. Иными словами, в клетке имеется по две (гомологичные) копии каждой пары сестринских хроматид. На рис. 1.5 показана последовательность процессов, обеспечивающих митотическое деление. Суть заключается в том, что сестринские хроматиды растаскиваются к противоположным полюсам клетки, так что каждая дочерняя клетка получает по одной копии каждой сестринской хроматиды. Теперь это самостоятельные хромосомы. 4п хромосомы, существовавшие в начале деления, разделились на два набора по 2п хромосом. Этот процесс повторяется в следующем клеточном цикле. Таким образом, митотическое деление гарантирует постоянство набора хромосом в соматических клетках. [c.10]

    МИТОЗ. Деление эукариотической соматической клетки. [c.523]

    Биологическая функция мейоза. Благодаря митозу поддерживается постоянство числа хромосом в ряду клеточных поколений. В отличие от митоза мейотический процесс обеспечивает уменьшение (редукцию) диплоидного числа хромосом (46 у человека) наполовину до гаплоидного (23 у человека). При оплодотворении в результате слияния двух гаплоидных половых клеток в зиготе восстанавливается диплоидное число 46, которое сохраняется во всех последующих митотических делениях. В мейозе расхождение гомологичных хромосом в разные половые клетки происходит случайно, что увеличивает генетическую изменчивость. Соматические клетки являются диплоидными (2п), они содержат обе гомологичные хромосомы одной пары, в то время как половые клетки гаплоидны (п) и несут только один гомолог из каждой пары. Последний цикл регулярного синтеза ДНК происходит в интерфазе непосредственно перед первым мейотическим делением и предшествует фазам мейоза, показанным на рис. 2.18. [c.54]

    Для получения полиплоидов в большинстве случаев воздействуют на соматические ткани интенсивно делящихся клеток растений. При этом возникает химерная ткань, состоящая из клеток различной плоидности наряду с диплоидными (2х) образуются тетраплоидные (4х) клетки, а также клетки типа 8х, 16л и т. д. Колхицин подавляет в молодых клетках проростков функции веретена клеточного деления, обеспечивающего расхождение хромосом к полюсам. Такие митозы, заторможенные инактивацией веретена, называются /(-митозами. Но рост клетки и деление хромосом при этом не прекращаются, клеточная же перегородка не образуется, и возникает клетка с увеличенным вдвое числом хромосом. [c.251]


    Клеточное деление у многоклеточных животных зависит от сложных социальных регуляторных механизмов, и пролиферация различных типов клеток контролируется различными сочетаниями белковых факторов роста. Они действуют в очень малых концентрациях, и многие из них служат локальными химическими медиаторами, позволяющими регулировать плотность клеточной популяции. Кроме того, большинство нормальных клеток неспособно делиться без прикрепления к внеклеточному матриксу. При недостатке факторов роста или при невозможности прикрепиться к матриксу клетки останавливаются после митоза, переходя в особое состояние покоя —Со из которого после добавления факторов роста они могут выйти лишь через несколько часов. Когда клетка вышла из состояния Со и прошла точку рестрикции в она быстро проходит фазы 8, 02 и М независимо от прикрепления или факторов роста. В пролиферирующей клеточной популяции переход через точку рестрикции представляет собой событие типа всё или ничего , которое, подобно радиоактивному распаду, характеризуется определенной вероятностью осуществления. В дополнение к непосредственному контролю клеточной пролиферации существуют еще долговременные механизмы, приводящие к старению и прекращению деления нормальных соматических клеток млекопитающих в культуре после ограниченного числа циклов деления. [c.425]

    Распределение хромосом между дочерними клетками при делении соматических клеток осуществляется путем митоза (гл. 1, разд. В,3). Последовательные фазы митоза называются профазой, метафазой, анафазой и телофазой (рис. 15-26). При конденсации хромосом во время профазы можно видеть, что они действительно состоят из двух отдельных нитей, переплетенных друг с другом. Эти нити называются хрома-тидами. Каждая хроматида представляет собой одну из двух идентичных двухцепочечных молекул ДНК (или группы молекул), образованных в процессе репликации ДНК, т.е. во время фазы 5 клеточного цикла. По мере спирализации хромосом (во В1ремя профазы) ядерная оболочка полностью фрагментируется или растворяется. [c.264]

    Мы уже использовали термин хромосома по отношению к молекуле нуклеиновой кислоты, которая представляет собой хранилище генетической информа-Щ1И вируса, прокариота или эукариотической клетки. Однако первоначально слово хромосома (т. е. окрашенное тело ) использовалось в другом смысле, для обозначения густо окрашенных образований в эукариотических ядрах, которые можно было наблюдать в световой микроскоп после обработки клеток красителем. Эукариотические хромосомы, в изначальном смысле этого слова, выглядят как резко очерченные структуры только непосредственно до и во время митоза— процесса деления ядра в соматических клетках (рис. 27-22). В покоящихся, неде-лящихся эукариотических клетках хромо- [c.873]

    Итак, мы располагаем многочисленными данными о том, что ДНК является носителем генетической информации. Благодаря своей комплементарной структуре ДНК замечательно подходит к этой роли. Ее способ репликации, при котором материнская молекула дает начало двум идентичным дочерним молекулам, гарантирует, что каждая клетка, образовавшаяся путем митоза, получает точно такой же по количеству и качеству набор хромосом, какой содержался в материнской клетке. Постоянство количества ДНК во всех покоящихся соматических клетках данного вида, удвоение этого количества перед делением, наличие половины его в клетках спермы, имеющих половинный набор хромосом,— все эти данные подтверждают основной вывод, хотя сами по себе отнюдь не являются решающими доказательствами. Основной вывод опирается и на хорошо известное соотношение между содержанием ДНК в клетке и числом хромосом, а также на твердо установленный факт локализации ДНК в хромосомах. Дальнейшие подтверждения базируются на данных по метаболитической стабильности и на ряде наблюдений, показавших, что ДНК в отсутствие белка может действовать как инфекционный агент (стр. 157), передающий биологическую информацию. Однако наиболее убедительные доказательства были получены, безусловно, при изучении бактериально трансформации. [c.314]

    В результате слияния мужского сперматозоида и женской яйцеклетки образуется новая клетка, называемая зиготой. Эта клетка подвергается усиленному делению, называемому митозом, в результате чего образуется эмбрион. На ранних стадиях развития образуются клетки двух родов, в корне отличные друг от друга зародышевые клетки, из которых потом разовьются сперматозоиды или яйцеклетки, и соматические клетки, из которых разовьются все органы и ткани, специфичные для данного вида. Зародьшевые клетки совершенно обособлены и в значительной мере защищены от влияния тех колоссальных превращений, которые протекают в соматических клетках. Когда соматические клетки разовьются настолько, что половые железы достигают созревания, зародышевые клетки становятся активными и начинают вырабатывать, в зависимости от пола животного, сперматозоиды или яйцеклетки. Если сперматозоид и яйцеклетка родителей содержали все необходимое для развития уникальной ферментной системы, то зародышевые клетки детей также должны обладать всем необходимым, для того чтобы в свою очередь передать их следующему поколению. [c.417]


    Амитоз. Наряду с митозом существует и другой вид деления соматических клеток, так называемое прямое их деление, или амитоз (от греч. а — без и mitos — нить), когда ядро клетки делится пополам простой перетяжкой. Амитоз у животных и растений был описан значительно раньше, чем митоз, но встречается это явление гораздо реже. Путем амитоза делятся клетки ряда простейших организмов, многие специализированные клетки, например клетки печени у животных, клетки стенок завязи паренхимы клубней у растений. Амитоз наблюдается при делении патологически измененных клеток, в частности раковых. [c.38]

    Было известно, что клетки, зараженные каким-нибудь вирусом, могут сливаться со здоровыми клетками и образовывать гигантские многоядерные клетки. Эти наблюдения использовали И. Ока-да в Японии и Г. Харрис в Англии для разработки техники гибридизации соматических клеток. Они употребляли для гибридизации вирус Сендай, обладающий способностью сливать клетки между собой. В результате обработки этого вируса ультрафиолетовыми лучами или алкилирующим мутагеном удается повредить его РНК и оставить неповрежденной белковую оболочку. Такой инактивированный вирус утрачивает свои инфекционные свойства, ио сохраняет способность сливать соматические клетки. С помощью инактивированного вируса Сендай удалось повысить выход гибридных клеток в несколько тысяч раз. При внесении инактивированного вируса Сендай в смен]аиную культуру двух типов клеток в некотором количестве образуются многоядерные гибридные клетки — гетерокарионы, содержащие в общей цитоплазме ядра обеих родительских клеток. Большинство многоядериых гетерокарионов быстро погибает, но те из них, которые содержат по одному ядру обеих исходных клеток, часто выживают и размножаются делением. После митоза и деления цитоплазмы из двуядерного гетеро-кариона образуются две одноядерные клетки (синкарионы), т. е. настоящие гибридные соматические клетки (рис. 66). Каждая из них содержит один набор хромосом линии А и один набор линии Б. [c.168]

    Большинство клеток человеческого тела (соматических клеток) содержат 23 пары хромосом. Исютючение составляют гаметы (сперматозоиды и яйцеклетки), содержащие только половину этого числа хромосом. В процессе оплодотворения при слиянии сперматозоидов с яйцеклетками возникают новые клетки (зиготы) с необходимыми 23 парами хромосом, которые образуют основу живого организма. Дальнейшее развитие происходит путем митоза, или деления клеток — процесса, при котором каждая хромосома, прежде чем клетка разделится, дуплицируется. В результате возншсают две новые клетки с идентичной системой 23 пар хромосом. [c.39]

    Как известно, в ядрах соматических клеток все хромосомы парные, набор хромосом двойной (2 п),. диплоидный. В процессе созревания половых клеток происходит редукционное деление (мейоз) (см. рис. 38а), при котором число хромосом уменьшается, становится одинарным (п), гаплоидным. Мейоз (от греч. те1оз(5 — уменьшение) происходит во время гаметогенеза. Этот процесс совершиется во время двух следующих одно за другим делений периода созревания, называемых соответственно первым и вторым мейотическим делением. Каждое из этих делений имеет стадии, аналогичные митозу, но из них только одно (как правило, первое) предваряется удвоением хромосомного материала в интерфазе. Поэтому в результате мейоза образуются клетки с ядрами, имеющими гаплоидный вабор хромосом. Схематично эти стадии можно изобразить так  [c.96]

    При гибридизации соматических клеток двух разных линий образуются гетерокарионы — клетки, которые содержат оба родительских ядра. Затем в результате митоза и деления образуются две одноядерные клетки — син-карионы, имеющие хромосомы обоих родительских клеток. [c.33]


Смотреть страницы где упоминается термин Митоз — деление соматической клетки: [c.35]    [c.230]    [c.20]    [c.68]    [c.21]    [c.91]    [c.101]   
Смотреть главы в:

Основы генетики наследственные нарушения развития у детей -> Митоз — деление соматической клетки




ПОИСК





Смотрите так же термины и статьи:

Делении

Митоз



© 2025 chem21.info Реклама на сайте