Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость коллоидных суспензоидов III

    Основным свойством как глинистых, так и родственных им минералов служит их кристаллохимический характер типичных сетчатых или слоистых структур (см. А. I, 70 и ниже ). Их суспензоиды в воде (или, реже, в других жидких средах) характеризуются взаимодействием больших активных поверхностей частиц с водой вследствие их коллоидных размеров (см. А. III, 180 и ниже). Если содержится небольшое количество воды, то результирующая механически однородная система будет обладать пластичностью, способностью деформироваться и легкой обрабатываемостью, на чем основано использование глин при керамической формовке. С другой стороны, если смесь содержит избыток жидкой воды, то образующаяся в результате жидкая текучая смесь будет характеризоваться удельной текучестью и кажущейся вязкостью, что и определяет методы керамического литья. Электролиты, добавляемые к таким системам, сильно влияют на все эти различные свойства поэтому изучение катионных адсорбций, реакций обмена основаниями и т. д. развивается все шире. Те же реакции определяют также характер почвы и образование глинистых осадков в геологических образованиях. Имея в виду все эти основные факты, в данной работе желательно рассмотреть физико-химический характер систем глина — вода с более обшей точки зрения, независимо от свойств силикагелей и других силикатов коллоидного типа. [c.312]


    Эмульсоиды. Эта группа включает золи таких веществ, как желатина, крахмал, альбумин и другие органические вещества. Золи этих веществ имеют вязкость, значительно больше вязкости воды. Из-за сходства с эмульсиями их называют эмульсоидами. Они являются обратимыми в том смысле, что, будучи выпарены досуха, при обработке водой снова переходят в коллоидное состояние. Так как они поглощают воду, их иногда называют гидрофильными золями. Эмульсоиды обыкновенно получают, обрабатывая горячей водой одно из вышеупомянутых веществ. При охлаждении образуется гель (отличие от суспензоидов). [c.129]

    Вязкость коллоидных суспензоидов, измеренная Тредуэллом и Кёнигом как индикатор реакций полимеризации, не может быть объяснена с точки зрения элементарной гидродинамической теории течением обычной жидкости, для которой применимо уравнение Ньютона (см. А. III, ЗЗв). Когда происходит коагуляция и концентрация суспендированного вещества увеличивается, то характер течения от нормального переходит к аномальному неньютоновскому , для которого применимо видоизмененное уравнение в формулировке Бингема (см. А. III, 338). Форма и размер частиц и их различный эффективный объем в результате связ1ывания растворителя (сольватация) играет в этих условиях особую роль. Филиппов рассматривал эти реакции главным образом с целью их использования при исследовании высокомолекулярных органических веществ. В данной книге мы будем рассматривать эти вопросы в отдельной главе (см. А. III, 3 и 336—1351), посвященной системам глина — вода. [c.252]

    Вообще аналогичное различие можно установить и в коллоидных суспензоидах, если их сравнивать с грубо зернистыми суспензиями, особенно в отношении их вязкости. Бузаг и Эреньи ясно показали влияние добавок сильных электролитов на кварцевые суспензии. В суспензиях бентонита Хаузер и Лебо также показали зависимость вязкости от размера зерен с более общей точки зрения эта зависимость рассматривалась Оствальдом . Для грубозернистых суспензий кварца вязкость выражается как функция взвешенного количества вещества (в объемных частях) с помощью уравнения т) = = т)о(1 -1- 1<Р -Ь Аат). которое при наличии в суспензии сильных электролитов принимает более упрощенное выражение, ранее предложенное Эйнштейном Т1 =11о(1Ч-+ к ), где к >2,5. Это соотношение строго применимо лишь к шарообразным частицам, но не к бентонитам или остроугольным обломкам кварца. Мы еще раз вернемся к этим условиям в отдельной главе, в которой рассмотрим вязкость систем глина — вода (см. А. III, (336 и ниже). [c.252]


    В предыдущей главе рассмотрен один из классов коллоидных растворов — суспензоиды. Однако имеется больщое число коллоидных растворов иного типа, технически еще более важных и отличающихся совершенно другими свойствами. Они получаются обычно непосредственным растворением в соответствующих растворителях аморфных твердых веществ. Чтобы иметь полную характеристику этих растворов, необходимо прежде всего получить возможно более ясное представление о химической структуре тех аморфных веществ, из которых они получаются. Применение классических методов определения структуры химических соединений к таким аморфным веществам, как каучук, целлюлоза, белки и т. п., прежде считалось невозможным. Эти вещества трудно поддаются очистке от обычных осмотических методов определения их молек лярного веса пришлось отказаться, так как дпя этих веществ получались величины слишком высокие, что не допускало точности измерения наконец, никаких методов химического их синтеза не существовало. Прогресс последних лет в разрешении этих проблем был изумительный электродиализ, центрифугирование и др. улучшили методы очистки ультрацентрифугирование и изучение вязкости дали надежные методы определения молекулярного веса наконец, были разработаны непосредственные и относительно простые синтезы, если не подлинных природных продуктов, то весьма сходных с ними по свойствам. В рез5 льтате открылась новая многообещающая глава в изучении аморфных веществ. [c.150]

    I тип — суспензоиды (или необратимые коллоиды, лиофобные коллоиды). Так называют коллоидные растворы металлов, нх оксидов, гидроксидов, сульфидов и других солей. Первичные частицы дисперсной фазы коллоидных растворов этнх веществ по своей внутренней структуре не отличаются от структуры соответствующего компактного вещества и имеют молекулярную или ионную кристаллическую решетку. Суспензоиды — типичные гетерогенные высокодисперсные системы, свойства которых определяются очень сильно развитой межфазовой поверхностью. От суспензий они отличаются более высокой дисперсностью. Суспензоидами их назвали потому, что, как и суспензии, они не могут длительно существовать в отсутствие стабилизатора дисперсности. Необратимыми их называют потому, что осадки, остающиеся при выпаривании таких коллоидных растворов, не образуют вновь золя при контакте с дисперсионной средой. Лиофобнымн (греч. лиос — жидкость, фобио — ненавижу) их назвали, предполагая, что особые свойства коллоидных растворов этого типа обусловлены очень слабым взаимодействием дисперсной фазы и дисперсионной среды. Концентрация лиофобных золей невелика, обычно меньше 0,1%. Вязкость таких золей незначительно отличается от вязкости дисперсионной среды. [c.312]

    Суспензоиды. К этому классу относятся золи таких веществ, как сульфид мышьяка, берлинская лазурь, гидроокись железа, галогениды серебра и металлы. Золи этих веществ очень мало отличаются от воды по своей вязкости и поверхностному натяжению. Если золь выпарить досуха, остаток при обработке его водой не переходит снова в коллоидное состояние. По этой причине такие золи называют иногда необрати-мьши золями. Иногда же их называют гидрофобными золями,-так как они не обладают свойством поглощать воду. [c.129]


Смотреть страницы где упоминается термин Вязкость коллоидных суспензоидов III: [c.294]    [c.312]   
Физическая химия силикатов (1962) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Суспензоиды



© 2024 chem21.info Реклама на сайте