Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический сдвиг ядер J и структура

    Наиболее простым спектром ЯМ.Р, состоящим из одного сигнала, обладают молекулы, все магнитные ядра которых эквивалентны и не содержат магнитных ядер другого изотопа. Спектр молекул, которые содержат два и большее число различных ядер, совсем не обязательно должен состоять из такого же числа резонансных сигналов (пиков). В качестве примера могут служить спектры ПМР уксусной кислоты и уксусного альдегида (рис. 28 . Оба соединения содержат два типа эквивалентных протонов и строение их сходно, поэтому можно было бы предполагать различие в основном в химических сдвигах отдельных сигналов. В действительности же спектры ПМР этих соединений существенно различаются уксусная кислота дает два одиночных сигнала, а уксусный альдегид дает два сигнала, обнаруживающие сверхтонкую структуру. [c.75]


    Вследствие используемого метода наблюдения, обычно химические сдвиги являются единственными параметрами, которые можно извлечь из спектра ЯМР С. Часто в спектре содержится просто единственный сигнал для каждого неэквивалентного атома углерода или группы в молекуле. В качестве примера рассмотрим спектр этилацетата (см. рис. 9.3-9). Четырем ядрам углерода соответствуют четыре сигнала. Наша задача —правильно отнести каждый сигнал к соответствующему типу ядер. Таким образом, знание общих правил, связывающих химические сдвиги с молекулярной структурой, даже более важно в спектроскопии ЯМР С, чем в ПМР. В обсуждении химических сдвигов протонов в предыдущей главе мы рассмотрели некоторые специальные явления, такие, как эффект кольцевых токов и магнитной анизотропии соседней группы, для того, чтобы понять экспериментальные результаты. Мы также упоминали межмолекулярные эффекты, такие, как влияние растворителя и температуры, в частности в связи с химическими сдвигами протонов групп ОН, 8Н, и NH (обмен протонов и водородные связи). В спектроскопии ЯМР на ядрах С все эти эффекты, вьфаженные в м.д., близки по величине к эффектам в ПМР. Следовательно, при рассмотрении суммарных сдвигов в диапазоне около 220 М.Д. они будут менее значимы. С другой стороны, эффекты заместителей, играющие важную роль в спектроскопии ПМР, остаются важными и в случае химических сдвигов ядер С. [c.232]

    Чтобы представить величины сигналов ЯМР на ядрах Н и для разных классов соединений, на рис. 9.3-20 и 9.3-21 показаны обобщенные данные. Видно, что резонансные сигналы ядер Н и в подобных соединениях сгруппированы в характеристические области. Например, сигналы ароматических протонов находятся в области й 6,5-9,0. Протоны альдегидной группы находятся в области химических сдвигов между 9 и 11. Соответствующие резонансные сигналы ядер С аренов занимают диапазон от 100 до 150, для альдегидов — от 180 до 210. Подобные эмпирические обобщения дают возможность химикам получить информацию о структуре неизвестного соединения, оценить успешность синтеза или количественно проанализировать компоненты в смеси — и это только некоторые из возможных применений ЯМР. [c.225]

    Кроме величины химического сдвига (т. е. положения сигнала в спектре ПМР) первостепенное значение для определения строения органических веществ имеет форма (структура) сигналов. Простые синглетные сигналы (узкие полосы с одним максимумом) соответствуют, как правило, магнитным ядрам, в непосредственной близости от которых (на расстоянии до трех простых ковалентных связей) нет других магнитных ядер. Между близко расположенными магнитными ядрами через посредство связевых электронов осуществляется так называемое спин-спиновое взаимодействие, приводящее к расщеплению магнитных энергетических уровней и связанному с этим воз- [c.28]


    Химический сдвиг ядер, входящих в жесткие молекулы, зависит от температуры. Химический сдвиг ядра определяется структурой молекулы и, следовательно, зависит от типа колебательного состояния. В общем случае наблюдаемый сдвиг определяется усреднением по колебательны.м состояниям  [c.103]

    Первые попытки использовать данные по температурной зависимости химических сдвигов в жидкой воде для идентификации какой-либо из многочисленных моделей структуры воды не привели к успешному результату полученные данные можно одинаково хорошо объяснить с помощью совершенно различных моделей— и непрерывных и дискретных [581]. В ряде работ из данных по временам релаксации на ядрах Н, Н(О) и Ю с помощью соотношений [582] вычислены времена корреляции [c.230]

    Наиболее часто методом ЯМР исследуются ядра водорода — протоны. Установлено, что положение линий в спектре ЯМР, отвечающих протону, существенно зависит от структуры молекулы. Электроны, находящиеся в ближайшем окружении протона, экранируют его и ослабляют действие магнитного поля. Для протонов, находящихся в разных местах молекулы, влияние соседних атомов неодинаково. Это позволяет установить, в какие группы входит водород, а следовательно, и уточнить строение молекулы. Смещение сигнала спектра ЯМР в зависимости от вида атомов, окружающих данный протон, называется химическим сдвигом. [c.54]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    При высоком разрещении спектра ЯМР в ряде случаев обнаруживается, что сигналы от групп ядер с разными химическими сдвигами состоят из нескольких линий, т. е. имеют тонкую структуру. Тонкая структура наблюдается всякий раз, когда есть два или более ядер, дающих резонансные сигналы при разных напряженностях поля (т. е. ядра разных элементов или изотопов, а также ядра одного изотопа, находящиеся в разном окружении и имеющие поэтому различные химические сдвиги). Число линий в спектре ядра А, входящего в молекулу А...В (А и В не эквивалентны), равно 21в+1, где Ь — спиновое квантовое числО ядра В. Например, в спектре На — одна линия ЯМР, в спектре НО дейтон образует две линии так как = , про- [c.125]

    Следует обратить особое внимание на то, что простые правила, сформулированные выше для объяснения сверхтонкой структуры в спектрах ядерного магнитного резонанса, применимы только к группам магнитно эквивалентных ядер. Если ядра в группе магнитно неэквивалентны, то непосредственно из спектра уже нельзя получить отдельные константы спин-спинового взаимодействия, а химический сдвиг можно с достаточной точностью определить по центру мультиплета без анализа спек тра лишь при условии, что выполняется соотношение 7/уоб С 0,1 разд. 2.3.2 этой главы). Это легко видеть, сравнив спектры [c.56]

    В большинстве случаев спектры ЯМР получают для определения структуры молекул. Эта информация содержится в спектральных параметрах химических сдвигах (J), константах спин-спинового взаимодействия (J) и интенсивностях сигналов. При анализе спектра и определении этих параметров наиболее важный момент — отнесение всех (или почти всех) сигналов к определенным ядрам или группам в молекуле. Тем не менее, полное отнесение невозможно на первом этапе, даже для опытного аналитика. Во многих случаях требуется дополнительная информация, которую получают либо из дополнительных экспериментов, либо из баз данных. В разд. 9.3.3 мы упомянули об эмпирических соотношениях для оценки химических сдвигов ядер и Эти правила основываются на наблюдении, что в пределах отдельного класса соединений вклад заместителей в величину химического сдвига является почти постоянной величиной. Сейчас не следует вдаваться в детали этих методов или методов, основанных на эффектах растворителя и температуры. [c.245]


    В некоторых 2М-экспериментах получают спектры, пики которых не занимают всю имеющуюся частотную область. Такая ситуация показана на рис. 6.6.1 разность частот ыЙ - ограничена, вследствие чего все сигналы расположены внутри полосы вблизи диагонали, в то время как сами частоты и могут принимать произвольные значения. Такая ситуация является типичной для гомоядерных корреляционных спектров (разд. 8.3.1) при отсутствии взаимодействий между ядрами с большой разностью химических сдвигов. Зонную структуру имеют также 2М 7-спектры, полученные с помощью импульсной последовательности тг/2 - Ь - тг - 2 (т. е. без периода рефокусировки [6.43]), и двухквантовые спектры двухспиновых систем [6.9, 6.44]. В таких случаях есть способ уменьшения ширины спектра по переменной ыь который позволяет избежать потери информации из-за эффектов наложения. [c.403]

    Этил-4,5-бензо-1,3,2-диоксафосфолан с хлоралем дает кристаллический аддукт (VI) состава 1 1, т. пл. 192-194°. Химический сдвиг ядра фосфора для соединения (VI) составляет —14 м. д. В его ИК-спектре отсутствует поглощение как фосфорильной, так и этиленовой связей. По-видимому, продукт (VI) имеет структуру биполярного иона со связью углерод—фосфор. Кроме соединеная (VI), в этой реакции образуются 2-этил-2-оксо-4,5-бензо-1,3,2-диоксафосфолан ( р —54) и 5-этил-1,4,6,9-тетраокса-2,3,7,8-дибензо-5-фосфаспиро[4,4]нонан (8р —4). [c.134]

    Девять эквивалентных протонов содержит радикал трет-бутил (СНз)зС—, и синглет при 1,28 м, д. могли дать его протоны. Метильная группа содержит три эквивалентных протона, а химический сдвиг ее свидетельствует о том, что она непосредственно связана с 5р -гибридизованным атомом углерода (2,28 м. д.). Четырехпротонный сигнал в слабом поле в области 6,9—7,4 м. д. можно отнести за счет бензольного ядра, а по виду мультиплета можно сказать, что неизвестный углеводород представляет собой п-дизамещенный бензол, ароматические протоны которого дают систему протонов АА ВВ. На основании этого анализа можно считать, что углеводород имеет структуру СНз — СаН4 С(СНз)з, т. е. структуру п-трет-Ьухит.-толуола. [c.156]

    Спектры мономера н днмера, имеюидего два эквивалентных атома Р, представлены одной линией, Химический сдвиг для мономера равен —1,3, т. е. введе1Н1е в молекулу фосфорной кислоты одного алкила несколько смещает сигнал ЯМР в сторону более слабого поля (что означает, что экранирующее поле ослабевает). Для димера, в котором атомы Р участвуют в образовании ангидридной связи, наблюдается сильное экранирование, приводящее к химическому сдвигу 10,3 м. д. В спектре тримера видиы две группы линий. Одна из них, с химическим сдвигом 11,6 м. д., соответствует крайним атомам фосфора, образующим одну ангидридную связь. Сигнал среднего атома, образующего две ангидридные связи, дополнительно смещен в сильное поле еще на 10 м. д. и находится при б = 21,6 м. д. В случае тримера отчетливо проявляется сверхтонкая структура спектра. Сигнал каждого нз крайних атомов Р, взаимодействующих с соседним атомом Р, расщеплен па два. Сигнал среднего атома Р, взаимодействующего с двумя ядрами Р, т. е. с системой с суммарным снином 1, расщеплен на три в соответствии с тремя возможны.ми ориентациями. [c.43]

    Основными параметрами ЯМР спектроскопии, позволяющей исследовать структуру органических соединений, являются химический сдвиг б и константа спни-спинового взаимодействия . Для ядер с одинаковым магнитным моментом, напрнмер для атомов водорода, при постоянном значении напряженности поля должна быть одна и та же резонансная частота. Однако электронная оболочка, экранирующая ядро от внешнего магнитного поля (Яо), сильно его меняет, создавая вторичное магнитное поле направленное против Яо. [c.88]

    При этом особенно важно, что присоединение гликозильного остатка к одному из атомов кислорода приводит к резкому (до 10 м. д.) изменению химического сдвига соответствующего ядра С, что позволяет непосредственно определять положение межмономерных связей в полисахаридных цепях. Понятно, что основанный на такой спектроскопии метод обладает колоссальными возможностями для изучения полисахаридных структур. Разберем в качестве примера спектр агароподобного полисахарида одной из красных водорослей .  [c.98]

    Почему ЯМР является столь полезным методом Это вызвано многими причинами, но главная из них в том, что метод ЯМР позволяет устанавливать взаимосвязи между конкретными объектами. Высокая информативность, определяемая большим диапазоном химических сдвигов и интенсивностей сигналов, имеет по существу обощй характер для остальных спектральных методов, в том числе для ИК-спектро-скопии. В этом отношении ЯМР не имеет больших преимуществ. Его особая ценность обусловлена тонкой структурой спектра, возникающей за счет взаимодействия между ядрами, а также различными другими взаимодействиями, такими, как ядерный эффект Оверхаузера, зависящий от взаимного расположения ядер. Если мы хотим охарактеризовать структуру выделенного чистого соединения, оценить протон-протонные расстояния в белке или выделить сигнал меченого метаболита из сложной природной смеси, то должны обратиться к тем свойствам, которые основаны на взаимодействии одного ядра с другим. [c.7]

    Важность спии-спинового взаимодействия при определении структуры достаточно ясна из одномерных протонных спектров. Изучая структуру мультиплетов, мы часто можем решить, сколько соседей имеет протон. Мы даже можем проследить последовательность соседних протонов, анализируя расщепления. Эксперименты с гомоядерной развязкой еще более облегчают идентификацию ядер-соседей. Высокая информативность КССВ связана с тем, что их величины легко предсказать для разных фрагментов. Для протонов константы через 2 и 3 связи всегда лежат примерно в области от 2 до 20 Гц, а константы через большее число связей очень малы. Предсказуемость КССВ, а также тот факт, что они позволяют определить пары взаимодействующих ядер, делают их чувствительным индикатором молекулярной структуры, В противоположность этому химические сдвиги позволяют только грубо оценить химическое окружение индивидуального ядра. [c.20]

    В последний раз вернувшись к идее разделения перекрывающихся мультиплетов, мы рассмотрим эксперимент, который находится на стыке гетеро- и гомоядерной J-спектроскопии, причем в экспериментальном аспекте ои очень близок к гетероядерной корреляционной спектроскопии (гл. 9). Этот метод решает проблему полностью перекрывающихся мультиплетов, перекрывание которых, очевидно, сохранится и в гомоядерном J-спектре, Ои позволяет перенести гомоядерную мультиплетную структуру на химические сдвиги соседних гетероядер, В действительности идея довольно проста. Гетероядерный корреляционный эксперимент в принципе уже содержит тонкую структуру по вследствие гомоядерных взаимодействий между ядрами, от которых переносится намагниченность. Эту структуру ие просто разглядеть [c.389]

    Первые эксперименты, в которых удалось наблюдать сигнал ядерного резонанса в конденсированных средах, были проведены в 1945 г. независимо Блохом и Парселлом [1.1, 1,2 ]. Следующим важным шагом было открытие химического сдвига - величины, которая характеризует электронное окружение рассматриваемого ядра. В металлах это явление (изменение резонансной частоты) впервые наблюдал Найт [1.3], а в жидкостях —Арнольд [1.4]. Это открытие оказало колоссальное влияние на развитие не только метода ядерного резонанса, но и других областей физики. Информация о частоте сигнала ЯМР дает возможность получить представление об электронном окружении ядра и о структуре химических соединений. На рис. 1.1 приведен спектр ЯМР на ядрах Н этанола [1.4 ], Этим спектром была открыта область исследований, известнаякак ЯМР высокого разрешения в жидкостях, К этой области относится подавляющее большинство всех экспериментов по ЯМР, проводимых в химии, биологии и медицине. Получение изображений с помощью ЯМР (ЯМР-томография) основано на этом явлении в жидкостях. Однако в данном случае химический сдвиг рассматривается как мешающий фактор, поэтому разрабатываются разнообразные методы, направленные на уменьшение различия в его значениях. Строго говоря, высокое разрешение может быть достигнуто лишь в жидкостях, но с помощью специальных экспериментальных методик может быть получена разнообразная полезная информация и для твердых тел. Недостатком этого метода является его низкая чувствительность. Этот недостаток частично был устранен введением Рихардом Эрнстом в 1966 г. [1,5 ] фурье-спектроскопии и появлением приборов со сверхпроводящим магнитом. Наибольшие успехи в применении метода ЯМР были достигнуты в исследованиях биологических макромолекул, что стало [c.12]

    Протонные спектры азулена и ацеплейадилена, измереннйе с помощью приборов высокого разрещения, были подвергнуты тщательному анализу величины химического сдвига и константы связи были определены и рассмотрены, исходя из модели кольцевого тока [85]. Показано [86], что спектр ЯМР может быть использован при определении степени замещения индоль-ного ядра в а- и -положениях. Спектр фурана состоит из двух триплетов с / = 1,5 гц, причем линии водорода в а-положении появляются при более слабом поле, чем в р-положении. Эта тенденция. которая систематически наблюдается также в спектрах ряда замещенных фуранов, использовалась с целью подтверждения установленных другими способами структур сложных природных производных фурана. кафестола, кoлyмб нa и лимо-нина [87]. [c.312]

    К сожалению, спектры легко расшифровываются только в тех случаях, когда константа спин-спинового расщепления / Э ачительно (в несколько раз) меньше, чем химические сдвиги между взаимодействующими ядрами. Такие спектры называются спектрами первого порядка. Если же эти величины близки, то часто спектры усложняются настолько, что их анализ возможен только с применением электронных вычислительных машии. Иногда удается свести сложный спектр к спектру первого порядка, исследуя тот же образец на приборе с более высокой рабочей частотой. Замена одного или нескольких протонов на дейтерий приводит к сильному упрощению спектра. Спектры различных изотопов никогда не перекрываются, поэтому сигналы протонов, подвергшихся замещению, исчезают. Константа спин-спинового взаимодействия / протона с ядром дейтерия в семь раз меньше, чем между двумя протонами в тех же прло-жениях, поэтому обычно исчезает и мультиплетная структура. Интересно, что анализ спектра ЯМР частично дейтерированного соединения может указать положение дейтерия в молекуле, а часто и процент дейтери-рования. [c.604]

    Для определения полиоксиалкиленовых концевых групп Ингэм и сотр. [83] применили другой метод, в котором использовался тот же подход. Из результатов их исследований вытекает не только то, что таким методом можно получить отношения числа первичных групп к числу вторичных, но и то, что на величины химических сдвигов для ядер оказывают влияние незначительные различия в структуре. Авторы изучали производные как уксусной, так и трифторуксусной кислоты, однако последние дали больше йнформации. Были приготовлены и проанализированы бис- (трифторацетат) этандиола-1,2, пропандиола-1,2, диоксипро-пилена и полиоксипропилена с молекулярным весом 425 и 2000. Изучая спектры резонанса на ядрах P, авторы пришли к выводу о том, что все гидроксильные группы ППГ (425) и ППГ (2000) являются вторичными. Присутствие вторичных гидроксильных групп двух типов в этих соединениях указывает на возможность существования изомеров. Кроме полиоксипропиленов исследованию были подвергнуты сополимеры полиоксипропилена с полиоксиэтиленом и вычислены отношения первичных гидроксильных групп ко вторичным. [c.68]

    Химический обмен - один из наиболее наглядных примеров динамических процессов. Сущность этого явления ясна из интуитивных соображений. Под химическим обменом в общем случае понимают процессы, в которых спин ядра в процессе релаксации может находиться в состояниях, характеризуемых различным химическим окружением, что соответствует различным параметрам ЯМР. В основе изменения окружения ядерного спина может лежать внутримолекулярный процесс, такой, например, как изменение конформации, или же межмолекулярный процесс. Здесь можно рассматривать исследуемое ядро в новой ковалентной структуре или же, наоборот, включать в рассмотрение межмолекулярные взаимодействия тех молекул, которые содержат данное ядро, и таким образом учитывать изменение окружения данного ядра. В простейшем случае имеется только два различных состояния, которые отличаются по химическому сдвигу (5. Время корреляции здесь представлено временами жизни Гд и Гд в состояниях А л В соотвественно, а величина А О) непосредственно определяется разностью химических сдвигов А<5 = - <5д, измеренной в единицах частоты. В этом случае медленный обмен определяется неравенством [c.72]

    Эксперименты с 2М-разделением взаимодействий могут проводиться также в сочетании с переносом когерентности. Такой подход может оказаться полезным для косвенного наблюдения в углеродных спектрах мультиплетной структуры, обусловленной протон-протон-ными скалярными взаимодействиями, за счет переноса намагниченности от протонов к ядрам При этом благодаря большему диапазону химических сдвигов ядер достигается выигрыш в разрешающей способности. Эксперименты такого типа мы рассмотрим в гл. 8. [c.430]

    Как и в протонных спектрах, ядра атомов, расположенные ближе к N-оксидной группе, имеют меньший химический сдвиг (сильнопольный), а расположенные дальше от N-оксндной группы — больший химический сдвиг (слабопольный). Разница в химических сдвигах слишком велнка, чтобы ее можно было объяснить только магнитной анизотропией N-оксидной группы. Общеизвестно, что экранирование за счет магнитной анизотропии редко достигает величин порядка 15 м.д. Дополнительную (а скорее всего, основную роль) в создании столь большого экранирования, как в приведенных выше примерах (-40 м.д.), играет, по-виднмому, повышенная электронная плотность на атоме углерода, примыкающем к N-оксидной группе, благодаря значительному вкладу резонансной структуры типа следующих  [c.67]


Смотреть страницы где упоминается термин Химический сдвиг ядер J и структура: [c.257]    [c.179]    [c.149]    [c.149]    [c.197]    [c.323]    [c.355]    [c.267]    [c.15]    [c.247]    [c.62]    [c.483]    [c.531]    [c.94]    [c.87]    [c.227]    [c.126]    [c.126]    [c.511]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Химический сдвиг



© 2025 chem21.info Реклама на сайте