Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнетизм ядерный

    ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР) — метод исследования структуры неорганических и органических веществ, в основе которого лежит резонансное поглощение электромагнитных волн веществом в постоянном магнитном поле, обусловленное ядерным магнетизмом. Я- м. р. является одним из новейших методов исследования открыли его в 1946 г. независимо друг от друга две группы американских физиков. [c.297]


    Сущность ядерного магнитного резонанса заключается в резонансном поглощении электромагнитных волн веществом, находящимся в постоянном магнитном поле, при условии, что это поглощение обусловлено ядерным магнетизмом (этим ЯМР отличается от ЭПР). [c.213]

    Измерение ядерного магнитного резонанса (ЯМР) — метод анализа, основанный на резонансном поглощении электромагнитных волн веществом, помещенным в постоянное магнитное поле. Ядерный магнитный резонанс использует явление ядерного магнетизма. Атомные ядра многих химических элементов имеют определенный момент количества движения, т. е. вращаются вокруг собственной оси (спин ядра). Спин ядра аналогичен спину электрона. Магнитный момент возникает потому, что каждое ядро имеет электрический заряд. Для наблюдения ЯМР ампулу, содержащую анализируемое вещество, помещают в катушку радиочастотного генератора. Образец может быть жидким, твердым или газообразным. Катушку с ампулой помещают в зазоре магнита перпендикулярно направлению магнитного поля Ни- Генератор создает на катушке слабое переменное магнитное поле Нх- Резонанс наступает при условии ф=фо= У о, где ф — скорость вращающегося поля Нх, фо — скорость прецессии ядер в поле На, 7 — гиромагнитное отношение у = т1Р (т — магнитный момент ядра атома, Р — момент количества движения ядра). При выполнении условия приемник регистрирует небольшое изменение напряжения на рабочем контуре в виде сигнала в форме гауссовой кривой. Кривая характеризуется высотой сигнала и шириной кривой (полосы), [c.452]

    Магнитный резонанс, связанный с электронным парамагнетизмом, назван электронным парамагнитным резонансом (ЭПР), а с магнетизмом атомных ядер —ядерным магнитным резонансом (ЯМР). [c.267]

    Ядерный магнетизм обусловлен следующими свойствами ядер атомов результирующим спином, который определяется спинами протонов и нейтронов, входящих в состав ядра, и распределением положительного заряда по ядру. [c.213]

    Метод ядерного магнитного резонанса (ЯМР) основан на использовании резонансного поглощения электромагнитных волн исследуемым веществом в постоянном магнитном поле, обусловленного ядерным магнетизмом. Метод ЯМР применяется для исследования комплексных соединений, состояния ионов в растворе, для изучения химической кинетики и т. п. [c.31]

    Под ядерным магнитным резонансом понимают резонансное поглощение электромагнитных волн веществом, находящимся в постоянном магнитном поле, обусловленное магнетизмом ядер. Допустим, что система ядер, наделенных магнитными моментами, попадает в сильное постоянное магнитное поле напряженностью Н . В этом случае ядерные магнетики начинают вращаться (прецессировать) с ларморовской частотой вокруг направления поля. В результате действия магнитного поля ядра распределяются по энергетическим уровням, причем их число в каждом состоянии (населенность) зависит от разности энергий соседних уровней и определяется уравнением Больцмана. Больше всего частиц собирается на самом нижнем энергетическом уровне. [c.209]


    Легче всего вогнать в ядро нейтрон — частицу, пе несущую электрического заряда. Конечно, непросто попасть в эту микроскопическую цель и таким снарядом размеры атомов измеряются миллионными долями миллиметра, а диаметр ядра примерно в 100 тыс. раз меньше диаметра атома. Но когда снарядом служит нейтрон, не приходится преодолевать сил отторжения, отталкивания. Помните Разноименные полюса притягиваются, одноименные полюса отталкиваются . Это правило одинаково справедливо и для электричества, и для магнетизма. Оно действует и в мире ядерных частиц. [c.447]

    Для понимания ядерного магнетизма можно воспользоваться следующей воображаемой моделью. [c.7]

    В заключение следует остановиться еще на одном аналитическом аспекте метода ЯМР. Как уже отмечалось, ядерная магнитная релаксация является фундаментальным свойством ядерного магнетизма, характеризующим динамику системы спинов. Вместе с тем высокая информативность параметров ядерной магнитной релаксации о свойствах исследуемого вещества, сравнительная простота их экспериментального определения, а также надежность теоретической интерпретации данных дают основание выделить это направление ЯМР в качестве самостоятельного физического метода исследования вещества — ядерную магнитную релаксационную спектроскопию, некоторые интересуюп ие нас особенности которой описаны в 5. [c.738]

    Ядро (имеющее заряд и угловой момент) и постоянный магнит-еще два источника магнитного поля, которые удобно описывать в терминах магнитных диполей (рис. 5.5). Вектор ц, использовавшийся в предыдущих главах для обозначения ядерного магнетизма, совпадает с направлением диполя стрелка указывает воображаемый Северный полюс (С). Для наших целей вполне достаточно представлять себе взаимодействие ядер как усиление или ослабление одним ядром поля В , в точке расположения другого (рис. 5.6). Результат этого усиления или ослабления называется локальным полем иа ядре, создаваемым другими ядрами. Ориентация ядерных диполей определяется внешним полем, но их относительные положения зависят от положения молекулы в целом, поэтому локальное поле на ядрах одного типа неодинаково в различных молекулах. В аморфных стеклообразных растворах или в поликристал-лнческих порошках положения отдельных молекул можно считать фиксированными, ио их ориентации не одинаковы, что приводит к образованию целого диапазона резонансных частот и уширению линий. В монокристаллах, напротив, может быть только несколько или вообще одна относительная ориентация диполей, и диполь-дипольное взаимодействие непосредственно проявляется в спектре в виде расщепления линнй, величина которого зависит от ориентации кристалла в магнитном поле. Заметьте, что это прямое магнитное взаимодействие намного превышает обычное скалярное спин-спнновое взаимодействие, но довольно часто превышает н разность химических сдвигов ядер. В результате изменение резонансной частоты может составлять много килогерц. [c.153]

    Физические основы эксперимента по ядерному магнитному резонансу уже были изложены в гл. 1 с позиций квантовой механики. Однако не менее полезно и классическое описание, хотя квантование углового момента нельзя обьяснить на чисто классической основе. Физические концепции, лежащие в основе ЯМР-эксперимента, конструкцию спектрометра ЯМР и многие другие аспекты можно продемонстрировать наиболее четко с использованием классического приближения. В последние годы особенно возросло значение импульсной спектроскопии, которая в области ЯМР высокого разрешения образует основу метода ФП-спек-троскопии. В связи с этим понимание ЯМР-эксперимента с классических позиций взаимодействия магнитных моментов с магнитным полем особенно важно. Действительно, ядерный магнетизм не является областью приложения лишь законов квантовой механики или классической физики, скорее он требует умения комбинировать обе концепции. [c.228]

    Рассмотрим систему в виде подсистемы магнитных ядер и подсистемы ПМЦ, причем химический тип ядер и частиц в первом приближении не учитываем. Выделим в многокомпонентной системе две взаимодействующие подсистемы. Первая подсистема включает неспаренные электроны парамагнитных центров раз.личной структуры. Вторая подсистема включает множество магнитных ядер всех без исключения компонентов смеси. Вторая подсистема делится на ряд групп ядер, различающихся между собой величиной химического сдвига резонансных частот. В дальнейшем мы исследуем взаимодействия подсистемы неспаренных электронов с каждой из групп магнитных ядер ядерной подсистемы. Очевидно, что точное решение задачи заключается в решении системы уравнений Шредингера для соответствующих спиновых волновых функций, что представляет слолсную задачу в теории магнетизма [43]. Для многокомпонентных систем такого точного решения, как известно, не существует [44]. Поэтому мы ограничимся феноменологическим макроскопическим подходом, исклю- [c.9]



Библиография для Магнетизм ядерный: [c.187]    [c.672]    [c.194]    [c.387]    [c.283]    [c.286]    [c.385]    [c.191]    [c.232]    [c.538]    [c.227]   
Смотреть страницы где упоминается термин Магнетизм ядерный: [c.54]    [c.210]    [c.144]    [c.445]    [c.297]    [c.666]    [c.669]    [c.671]    [c.330]    [c.304]    [c.261]    [c.227]    [c.12]   
История органической химии (1976) -- [ c.262 ]

История органической химии (1976) -- [ c.262 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.555 ]

Современные теоретические основы органической химии (1978) -- [ c.8 ]

Современные теоретические основы органической химии (1978) -- [ c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Магнетизм



© 2025 chem21.info Реклама на сайте