Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Локальное поле на ядре

    ЯМР жидкостей во многом отличается от ЯМР твердых тел. Интенсивное молекулярное движение в жидкости осредняет локальные поля соседних магнитных ядер почти до нуля и линия ЯМР становится узкой. Характер спектра ЯМР жидкости часто определяется магнитным взаимодействием ядра с электронной оболочкой молекулы, в к-рой находится ядро. Магнитное поле Яо вызывает появление диамагнитного момента электронной оболочки. Магнитные силовые линии внешнего поля как бы отклоняются от ядра, т. е. магнитное ядро экранируется электронами оболочки. Величина экранирующего поля меняется от значения порядка Яо-10 для протона до значений Яо-10 2 для тяжелых атомов. Такое экранирование есть и в твердом веществе, но там оно незаметно из-за более сильных локальных полей. Ядра, находящиеся в различных молекулах или в химически различных положениях одной молекулы, экранируются неодинаково. Поэтому резонанс таких ядер наблюдается при разных частотах. Смещение резонансных частот химически неэквивалентных ядер, пропорциональное полю Яо, наз. химическим сдвигом. Химич. сдвиг измеряется относительно стандартного вещества, магнитные ядра к-рого структурно эквивалентны. Для протонного резонанса эталонным веществом служат тетраметилсилан, циклогексан, вода и др. Химич. сдвиги выражаются в безразмерных [c.546]


    Если больше, чем время, необходимое для удаления образца из поля, то избыточная заселенность спинов -Ь 1/2 сохранится, но они будут прецессировать вокруг направления суммарного локального поля на ядре, возникающего за счет спин-орбитального взаимодействия с соседними протонами. По всему образцу намагниченность равна нулю, но если этот образец вновь поместить в магнитное поле, то в образце одновременно возникает намагниченность, причем не придется ждать столько же времени, сколько необходимо для процесса Т . Эта ситуация изображена на рис. 14.8 в той части, которая помечена как образец повторно внесен в поле . Интенсивность намагниченности можно измерить немедленно после повторного внесения образца в магнитное поле, используя 90 -ный импульс и измеряя кривую СИС (рис. 14.8). Если период времени между удалением образца из поля и повторным его внесением туда достаточно велик по сравнению с то намагниченность будет падать по мере рандомизации спинов. [c.280]

    Теперь рассмотрим эксперимент, в котором образец облучается радиочастотным излучением, соответствующим энергии квадрупольного перехода ядра В, после удаления образца из поля. Кроме того, предположим, что время между удалением образца из поля и повторным его внесением туда мало по сравнению с протонов. Эффект этого радиочастотного излучения заключается в рандомизации ядер В за счет индуцированных им квадрупольных переходов в спиновой системе В. При выполнении соответствующих условий относительно амплитуды приложенного радиочастотного излучения, отвечающих наличию локального поля на протоне, рандомизация спиновой системы В влияет на рандомизацию спиновой протонной системы. Это происходит следующим образом. Если образец удален из поля, то разность энергий между состояниями т= -Ь 1/2 и ш = — 1/2 (т.е. энергия перехода ядра водорода) снижается до нуля. В этом процессе наступит момент, когда разность [c.280]

    Помимо экранирования Яэфф зависит от любых магнитных полей, дополнительно воздействующих на частицу. Если соседние ядра обладают магнитными моментами, то создаваемое ими локальное магнитное поле также будет изменять Н ,фф- Это локальное поле будет зависеть от числа окружающих частиц н от магнитного момента. Такое влияние соседних частиц расщепляет резонансную линию и определяет ее сверхтонкую структуру. [c.260]

    Частота прецессии свободного электрона всегда одинаков , но из-за того, что методы радиоспектроскопии очень чувствительны к особенностям полей, окружающих электрон (локальные поля создаются атомными ядрами, находящимися вблизи электрона),, они могут регистрировать ее изменение, вызванное этими полями. [c.268]


    Спин-решеточная релаксация препятствует установлению на сыщения, когда поглощения энергии не происходит. Магнитные моменты соседних ядер, а также другие магнитные моменты, которые могут быть в образце, создают вокруг себя магнитные поля, в результате чего каждое а ядро находится в своем локальном поле Н, несколько отличном от Яо. В переменном поле с частотой V поглощение энергии определяется соотношением [c.269]

    Частота прецессии свободного электрона в поле Яо всегда одинакова, но из-за того, что методы радиоспектроскопии очень чув- ствительны к особенностям полей окружающих электронов (локальные поля создаются атомными ядрами, находящимися вблизи электрона), имеет место заметное ее изменение (химический сдвиг). [c.212]

    Влияние спинового состояния одного ядра на положение зеемановских уровней и резонанс другого несколько упрощенно можно описать следующим образом. Пусть в системе ядер АХ спин /х ориентирован против поля В, что соответствует состоянию Рх, тогда локальное магнитное поле на ядре А будет понижено по сравнению с тем, какое было бы в случае отсутствия ядра X. Это приведет к тому, что для достижения условия резонанса потребуется приложить поле более высокой напряженности, т. е. выше будет и резонансная частота [согласно 1.12], как это показано на схеме рис. 1.7. Если ядро X находится в состоянии ах, т. е. спин ориентирован по полю, то на ядре А локальное поле повысится, т. е. для резонанса потребуется наложение поля более низкой напряженности, чем в отсутствие ядра X. Таким образом, в спектре ЯМР будет наблюдаться дублетный сигнал ядра А. Расстояние между компонентами дублета (в Гц) и будет константой спин-спинового взаимодействия  [c.24]

    Химический сдвиг. В ЯМР-спектрах высокого разрешения резонансный сигнал жидких проб расщепляется вследствие влияния различий в распределении электронов вокруг ядра. Внешнее магнитное поле Я индуцирует в электронной оболочке молекулы небольшие дополнительные локальные поля, которые являются своего рода экраном , уменьшающим воздействие [c.254]

    Так, если вблизи резонирующей частицы в составе той же молекулы или свободного радикала находится ядро с 5 =5 О, то в зависимости от ориентации спина этого ядра локальное поле может принимать 25 -г 1 различных значений, соответствующих возможным ориентациям спина. В таком случае вместо одной линии в спектре магнитного резонанса будет наблюдаться 23 Ч- 1 лини . Такое расщепление сигнала магнитного резонанса в результате действия магнитного поля соседнего ядра получило название сверхтонкого расщепления сверхтонкой структуры, СТС). [c.42]

    Величина б, характеризующая степень экранирования внешнею поля локальным полем, зависит от природы химической связи, образуемой резонирующим ядром, и получила название химического сдвига. Эта величина безразмерна и обычно выражается в миллионных долях от единицы. Практически определяют не абсолютное значение б, а относительное, принимая за нуль химически сдвиг соответствующего ядра в некотором стандартном химическом соединении. [c.42]

    Наиболее важной проблемой, с точки зрения аналитического применения метода, является природа процессов релаксации в жидкостях. При рассмотрении возможности передачи энергии путем спонтанной эмиссии, теплового излучения, электрических взаимодействий показано, что найденные экспериментально времена релаксации Т, и Та, например, протонов воды могут быть объяснены лишь при учете магнитных взаимодействий между частицами через локальные магнитные поля. Локальные поля будут флуктуировать, поскольку молекулы в растворах совершают трансляционные, вращательные и колебательные движения. Компонента создаваемого таким образом переменного поля с частотой, равной частоте резонанса, вызывает переходы между энергетическими уровнями изучаемого ядра совершенно так же, как и внешнее радиочастотное поле. Скорость процесса, приводящего к выравниванию энергии в спиновой системе и между спиновой системой и решеткой , будет зависеть от распределения частот и интенсивностей соответствующих молекулярных движений. При эюм следует учитывать следующие виды взаимодействий магнитное диполь-дипольное, переменное электронное экранирование внешнего магнитного поля, эле.ктрпческое квад-рупольное взаимодействие (эффективное для ядер с / > /2), спин-вращательное, спин-спиновое скалярное между ядрами с разными значениями I. [c.739]

    В молекулах на величину экранирования ядер оказывает влияние не Только электронная плотность у данного атома, но и локальные поля, обусловленные движением электронов у соседних атомов, и поля, создаваемые межатомными токами. Поэтому к ним не применимы простые рассуждения, которые проводились для атома.. Напряженность вторичного поля (Я ) вблизи некоторого ядра [c.88]

    Каждый радикал, вообще говоря, имеет свой характеристический -фак-тор, поэтому радикалы имеют разные частоты (Иц. За счет сверхтонкого взаимодействия неспаренных электронов с магнитными ядрами радикала уровни энергии спина неспаренного электрона расщепляются. В результате в спектре ЭПР радикала появляется сверхтонкая структура (СТС). Каждая компонента спектра соответствует определенной конфигурации ядерных спинов. Ядерные спины в разных конфигурациях создают разные локальные поля для спина неспаренного электрона и, как результат, для разных конфигураций ядерных спинов электронный спин радикала имеет разную резонансную частоту. [c.91]


    Непрямое электронное спин-спиновое взаимодействие. При достаточно высокой разрешаюи1,ей способности спектрометра ЯМР становится заметным влияние на спектр других локальных полей. Последние возникают вследствие ферми-контактного взаимодействия ядерного спина, ориентированного во внешнем поле Н , со спином электрона. Это приводит к возникновению электронной поляризации, которая вновь воздействует на соседние ядра (сверхтонкое взаимодействие). Вследствие существования 2/ + 1 различных возможностей ориентирования спина ядра А 8 поле (см. стр. 249) по этому механизму расщепления, в м сте нахождения соседнего ядра X возникают точно такие же многочисленные локальные ПОЛЯ вызывающие расщепление сигнала. Это сверхтонкое расщепление характеризуется константой сверхтонкого взаимодействии J, величину которой измеряют в герцах. В простых случаях она соответствует расстоянию между соседними линиями в мультиплете сигнала (рис. 5.23, б). Если п эквивалентных ядер А взаимодействуют с ядром X, то на ядро А оказывают воздействие 9.nJ + 1 различных дополнительных полей и мультиплетность расщепления сигнала оказывается равной [c.258]

    В первом приближении причиной химического сдвига являются электроны связи С — Н, в образовании которой участвует данный атом водорода. Приложенное магнитное поле Во инду цирует такие циркуляции окружающего ядро электронного облака, что в соответствии с законом Ленца возникает магнитный момент, по направлению противоположный Во (рис. П. 2). Таким образом, локальное поле на ядре оказывается меньше приложенного. Этот эффект соответствует магнитному экранированию ядра, которое понижает Во на величину стВо, где а — константа экранирования для данного протона  [c.30]

    Помимо остаточной неоднородности магнитного поля (что является обычным), на ширину линий спектров ЯМР жидкостей могут влиять два фактора. Время жизни квантового стационарного состояния имеет порядок 27 следовательно, неопределенность значений связанной с ним энергии распределяется в диапазоне порядка А/27 ь что обусловливает разброс резонансных частот в диапазоне порядка У яТу. В случае жидкостей с очень коротким временем спин-решеточной релаксации Ту уширение линий благодаря неопределенности может быть весьма значительным. Другой тип уширения, известный под названием уши-рения за счет прямого дипольного влияния, обусловлен переменным локальным магнитным полем, появляющимся у ядра под влиянием соседних ядерных магнитов. Составляющая локального поля в направлении приложенного магнитного поля, обусловленная соседними магнитными диполями, весьма близка к нулю в жидкостях, молекулы в которых могут свободно поворачиваться. В вязких жидкостях, движение молекул в которых затруднено, влияние местного магнитного поля может оказаться достаточно большим, чтобы нарушить спектр ЯМР. [c.261]

    Вещество, содержащее парамагнитные ядра, можно рассматривать как термодинамическую систему, в пределах которой можно выделить подсистемы ядерных спинов, ядерных электрических квадруполей, спинов неспаренных электронов и т. п. Они могут обмениваться энергией как между собой, так и с тепловым резервуаром — решеткой , т. е. веществом в целом, состоящим из атомов и молекул, имеющих колебательные, вращательные, поступательные степени свободы движения. Внутри спиновой системы можно выделить зеемановскую и дипольную подсистемы. Первая отражает взаимодействие ядерных спинов с внешним приложенным полем, а вторая — диполь-дипольные взаимодействия, т. е. взаимодействие каждого спина с локальным полем, создаваемым окружающими его соседними магнитными диполями. [c.251]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]

    С точностью до постоянного множителя второй момент равен среднему квадрату локального поля на ядре /, создаваемого окружающими его к ядрами. [c.260]

    В результате локальные поля, действующие на ядра в звеньях цепи, будут содержать быстро и медленно флуктуирующие компоненты с временами корреляции т и В силу большого различия временных масштабов движения оба компонента локального поля можно считать статистически независимыми. Тогда функция корреляции может быть представлена в виде произведения функций корреляции для каждого из компонентов  [c.264]

    Метод двойного резонанса с адиабатическим размагничиванием является новым методом в этой области. Рассмотрим образец с квадрупольным ядром в молекуле, в которой имеется несколько протонов. Если образец помещен в магнитное поле и мы ждем достаточно долго, чтобы наступило равновесие, то, как это обсуждалось в главе, посвященной ЯМР, будет существовать избыток протонных ядерных моментов, расположенных вдоль поля, которые участвуют в ларморовой прецессии и дают вклад в суммарную намагниченность. Если образец удалить из поля, то суммарная намагниченность упадет до нуля, поскольку индивидуальные моменты располагаются в соответствии со своими собственными локальными полями. Беспорядочная ориентация этих локальных полей в отсутствие внешнего поля приводит к нулевой суммарной намагниченности. Эта ситуация изображена на рис. 14.8 слева, в той части, которая помечена как образец удален из поля . [c.280]

    Согласно принципу неопределенности Гейзенберга АхАЕ=/г, время жизни в данном энергетическом состоянии влняст па определенность зиачения энергии в этом состоянии. Следовательно, от величины Т должна зависеть ширина резоиаисной линии. Поглощенная энергия может передаваться частицами не только за счет теплового движения, но и за счет так называемого спин-спинового взаимодействия. В ядерном магнитном резо 1аисе такое взаимодействие обычно наблюдается у связанных друг с другом частиц с магнитным енином. На каждый магнитный момент ядра действует не только постоянное магнитное поле Яо, но и слабое локальное ноле Ялок, создаваемое соседними магнитными ядрами. Магнитный диполь на расстоянии г создает поле для протона это поле равно 14 Э на расстоянии 1 А. С ростом г напряженность поля Яло быстро падаст, так как существенное влияние могут оказывать только ближайшие соседние ядра. По величине разброса локального поля Ядок при помощи уравнения резонанса мол<но найти разброс частот ларморовой прецессии  [c.256]

    Напряженность поля, воздействующего при обычных условиях измерения на ориентацию протона, иллюстрируется данными табл. 5.27. Из нее следует, что дополнительные локальные поля, вызванные упомянутыми взаимодействиями, по сравнению с прило-Таблица 5.27 женным полем чрезвычайно малы. По поля, ВЛИЯЮЩИЕ НА ОРИЕНТАЦИЮ ЯДРА эхой причине раздельная оценка их [по уравнению (5.4.10)] влияния на спектр является отчасти [c.254]

    В ЯМР-спектрах существенное значение имеют локальные поля, возникающие вследствие взаимодействия внецщего магнитного гюля с электронами, находящимися на прилегающих к резонирующему ядру молекулярных орбиталях. Под действием внешнего магнитного поля изменяется характер движения этих электронов, что проявляется в возникновении экрашфующего магнитного гюля, пропорционального приложенному внешнему полю. Если обозначить это экранирующее поле бВ, где б — коэффициент пропорциональности, то магнитная индукция поля, в котором оказьшается резонирующее ядро, становится равной [c.42]

    Поглощенная энергия может передаваться частицами не только за счет теплового движения, но и за счет так называемого спин-спинового взаимодействия. В ядерном магнитном резонансе такое взаимодействие обычно наблюдается у связанных друг с другом частиц с магнитным спином. На каждый магнитный момент ядра действует не только постоянное магнитное поле Яо, но и слабое локальное поле Ялок, создаваемое соседними магнитными ядрами. Магнитный диполь на расстоянии г создает поле —,  [c.118]

    Совершенно ясно, что тонкая структура спектров ЯМР жидкостей не обусловлена прямым магнитным взаимодействием через пространство спиновых магнитных моментов (диполей) ядер, хотя подобное взаимодействие играет важную роль при исследовании спектров твердых тел [5, стр. 152 и сл.]. Теоретически показано, что благодаря тепловому хаотическому движению молекул составляющая локального поля у любого ядра, параллельная внешнему полю и возникающая в результате прямого взаимодействия диполей, усредняется до нуля [5, тр. 118]. Это эмпирически подтверждается тем, что резонансные спектры жидкостей, обусловленные только магнитноэквивалентными ядрами, ни при каких условиях не расщепляются. Например, наличие в метильной группе трех протонов сказывается на площади резонансной кривой, но не на ее множественности (см. рис. 5,6). В настоящее время считается, что тонкая структура обусловлена косвенным взаимодействием ядерных спннов через валентные электроны. Хотя суммарный спиновый магнитный момент электронов в ковалентной связи или заполненной оболочке благодаря спариванию электронных спинов равен нулю, ядерный диполь вызывает слабую магнитную поляризацию валентных электронов [32—34]. Электронная спиновая плотность, не равная нулю, появляется в других облястях связи и в зависимости от степени делокализации электронов, возможно, на более далеких расстояниях. Соседний ядерный диполь взаимодействует со спиновой плотностью в этой области, и (квантованная) энергия системы зависит от относительной ориентации обоих спиновых моментов ядер, а также от их ориентации во внешнем магнитном поле. Подобное косвенное взаимодействие не усредняется в жидкостях до нуля за счет хаотического движения молекул и вызывает расщепления, не зависящие от внешнего поля, имеющего определенный порядок величины [32]. Кроме того, как будет показано далее, постулированное взаимодействие таково, что взаимодействие между полностью эквивалентными ядрами не приводит к появлению таких эффектов, которые можно было бы установить экспериментально. [c.289]

    Ядро (имеющее заряд и угловой момент) и постоянный магнит-еще два источника магнитного поля, которые удобно описывать в терминах магнитных диполей (рис. 5.5). Вектор ц, использовавшийся в предыдущих главах для обозначения ядерного магнетизма, совпадает с направлением диполя стрелка указывает воображаемый Северный полюс (С). Для наших целей вполне достаточно представлять себе взаимодействие ядер как усиление или ослабление одним ядром поля В , в точке расположения другого (рис. 5.6). Результат этого усиления или ослабления называется локальным полем иа ядре, создаваемым другими ядрами. Ориентация ядерных диполей определяется внешним полем, но их относительные положения зависят от положения молекулы в целом, поэтому локальное поле на ядрах одного типа неодинаково в различных молекулах. В аморфных стеклообразных растворах или в поликристал-лнческих порошках положения отдельных молекул можно считать фиксированными, ио их ориентации не одинаковы, что приводит к образованию целого диапазона резонансных частот и уширению линий. В монокристаллах, напротив, может быть только несколько или вообще одна относительная ориентация диполей, и диполь-дипольное взаимодействие непосредственно проявляется в спектре в виде расщепления линнй, величина которого зависит от ориентации кристалла в магнитном поле. Заметьте, что это прямое магнитное взаимодействие намного превышает обычное скалярное спин-спнновое взаимодействие, но довольно часто превышает н разность химических сдвигов ядер. В результате изменение резонансной частоты может составлять много килогерц. [c.153]

    На энергию спинового перехода протона сильное влияние оказывают локальные поля, создаваемые другими магнитными ядрами, в частности другими протонами. Такое спин-спиновое взаимодействие (связь) приводит к расщеплению сигналов протонного спектра ЯМР на несколько близко расположенных линий. Так, зтильная группа чаще всего представлена четырьмя расположенными на одинаковом расстоянии друг от друга линиями, соответствующими СНг-группе, и тремя линиями от СНз-протонов. Протоны, присоединенные к одному и тому же атому углерода, обычно не дают расщепления собственных линий, но зато приводят к расщеплению сигналов от протонов, связанных с соседними лтомами углерода. Эти соседние протоны могут находиться в любом нз двух спиновых состояний, что проявляется в разнице энергии рассматриваемых ЯМР-переходов, которую легко измерить [157—161]. [c.186]

    В присутствии химического обмена X X локальное поле у ядра А равно ISI2y , где 5 - спиновое квантовое число ядра X. Это приводит к обмену местоположениями, потому что существует 50% вероятности того, что X ядро со спином а будет замещено X ядром со спином р. По причинам, указанным выше, населенности спиновых состояний будут следующие  [c.107]

    Ранее мы уже отмечали, что стимулированные резонансные переходы ядер между уровнями энергии могут происходить под действием локальных полей, флуктуируюш их вследствие теплового движения атомов и молекул, если в спектре флуктуаций присутствуют частоты, соответствуюш ие резонансной частоте. Этими переходами обеспечивается энергетическая связь между спиновой системой и решеткой, в результате которой происходит выравнивание их температур. Мы рассматривали один из основных механизмов релаксации — магнитные диполь-диполь-ные взаимодействия. Однако, суш ествуют и другие физические взаимодействия, посредством которых энергия ядерных спинов может передаваться тепловому резервуару — решетке. Это электрические квадрупольные взаимодействия-, пространственная анизотропия электронного окружения ядра (анизотропия химического сдвига) скалярное ядерное или электронно-ядерное взаимодействие спин-вращательное взаимодействие, т. е. все те виды взаимодействия, которые обеспечивают возникновение на ядрах флуктуируюш его магнитного (или на квадруполь-ном ядре — флуктуируюш его градиента электрического поля) в результате движения атомов или молекул. Эти виды взаимодействий детально рассмотрены в [168, 171]. [c.257]


Смотреть страницы где упоминается термин Локальное поле на ядре: [c.214]    [c.97]    [c.254]    [c.112]    [c.118]    [c.61]    [c.61]    [c.64]    [c.327]    [c.140]    [c.239]    [c.504]    [c.505]    [c.281]    [c.31]    [c.96]   
Современные методы ЯМР для химических исследований (1992) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Локальное поле

Локальность



© 2025 chem21.info Реклама на сайте